metricas
covid
Buscar en
Revista Colombiana de Reumatología (English Edition)
Toda la web
Inicio Revista Colombiana de Reumatología (English Edition) Pharmacogenomics of etanercept, infliximab, adalimumab and methotrexate in rheum...
Información de la revista
Vol. 25. Núm. 1.
Páginas 22-37 (enero - marzo 2018)
Visitas
4622
Vol. 25. Núm. 1.
Páginas 22-37 (enero - marzo 2018)
Review Article
Acceso a texto completo
Pharmacogenomics of etanercept, infliximab, adalimumab and methotrexate in rheumatoid arthritis. A structured review
Farmacogenómica de etanercept, infliximab, adalimumab y metotrexato en artritis reumatoide. Revisión estructurada
Visitas
4622
Yolima Puentes Osorioa,
Autor para correspondencia
yolimap16@gmail.com

Corresponding author.
, Pedro Amariles Muñoza, Beatriz Helena Aristizábal Bernalb, Luis Fernando Pinto Peñarandab, Miguel Ángel Calleja Hernándezc
a Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
b Laboratorio de Biología Molecular, Hospital Universitario Pablo Tobón Uribe, Medellín, Colombia
c Facultad de Farmacia, Universidad de Granada, Granada, España
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (1)
Tablas (2)
Table 1. Single nucleotide polymorphisms associated with variability in pharmacokinetics and pharmacodynamics of methotrexate and tumor necrosis factor inhibitors: infliximab, etanercept, adalimumab.
Table 2. Location and exons of genes identified with single nucleotide polymorphism that affect the effectiveness and safety of infliximab, etanercept, adalimumab and methotrexate.
Mostrar másMostrar menos
Abstract
Introduction

Individual genetic variability favors the capacity of response and toxicity to the drugs is different in each person. Rheumatoid arthritis reported rates of response to the drugs etanercept, infliximab, adalimumab and methotrexate is close to 60%. This variability can be explained by genetic polymorphisms characteristic of each patient.

Objective

To identify genetic polymorphisms reported in scientific articles that may affect the pharmacokinetics and pharmacodynamics of etanercept, infliximab, adalimumab, and methotrexate, and their response in patients with rheumatoid arthritis.

Materials and method

A systematic search was performed in PubMed and Medline, with the key terms: “rheumatoid arthritis” and “pharmacogenomic” and “polymorphisms” and “methotrexate” and “infliximab” and “adalimumab” and “etanercept”, obtaining 164 articles, 117 non-duplicates, and 19 articles that met the inclusion criteria.

Results

Of the 19 articles, 2 reported polymorphisms affecting the pharmacokinetics of infliximab, adalimumab, etanercept, methotrexate, and 17, pharmacodynamics. In the 19 articles, 23 polymorphisms of clinical relevance were identified in European, Japanese, Jordanian, and Indian populations.

Conclusions

A total of 23 polymorphisms with clinical relevance were identified, which could be the basis for the design of a specific test sequencing in rheumatoid arthritis patients being considered for treatment with infliximab, adalimumab, etanercept, or methotrexate. The practical usefulness of this strategy requires evidence in specific clinical studies, associated with a targeted and personalized genetic test, and its effect on the effectiveness and safety of drug therapy with these drugs prescription.

Keywords:
Pharmacogenomics
Rheumatoid arthritis
Polymorphism
Etanercept
Infliximab
Adalimumab
Methotrexate
Resumen
Introducción

La variabilidad genética individual favorece que la capacidad de respuesta y toxicidad a los fármacos sea diferente en cada persona. En la artritis reumatoide se reportan índices de respuesta a los medicamentos etanercept, infliximab, adalimumab y metotrexato cercanos al 60%. Esta variabilidad puede explicarse por polimorfismos genéticos característicos de cada paciente.

Objetivo

Identificar polimorfismos genéticos reportados en artículos científicos que pueden afectar la farmacocinética y la farmacodinámica de etanercept, infliximab, adalimumab y metotrexato, y su respuesta en pacientes con artritis reumatoide.

Materiales y método

Se realizó una búsqueda sistemática en PubMed/Medline, con los términos clave: «rheumatoid arthritis» and «pharmacogenomic» and «polymorphisms» and «metotrexato» and «infliximab» and «adalimumab» and «etanercept» obteniendo 164 artículos, 117 no duplicados y 19 artículos que cumplieron los criterios de inclusión.

Resultados

De los 19 artículos, 2 reportaron polimorfismos que afectan la farmacocinética de infliximab, adalimumab, etanercept y metotrexato, y 17, la farmacodinámica. En los 19 artículos se identificaron 23 polimorfismos de relevancia clínica en población europea, japonesa, jordana e india.

Conclusiones

Se identifican 23 polimorfismos de relevancia clínica, los cuales podrían ser el soporte para el diseño de un test de secuenciación específica en pacientes con artritis reumatoide, en los que se considere la utilización de infliximab, adalimumab, etanercept o metotrexato. La utilidad práctica de este tipo de estrategia requiere ser evidencia en estudios clínicos específicos, relacionados con una prescripción orientada por test genéticos y personalizada, y su efecto sobre la efectividad y seguridad de la farmacoterapia con estos medicamentos.

Palabras clave:
Farmacogenómica
Artritis reumatoide
Polimorfismo
Etanercept
Infliximab
Adalimumab
Metotrexato
Texto completo
Introduction

Human beings exhibit genetic variation associated with differences in their DNA sequences, which entails that the capacity to respond to the therapeutic and toxic effects of the drugs may be different in each individual.1,2 The discipline that studies this genetic variability in the response to a drug, at an individual level, is pharmacogenetics; meanwhile, pharmacogenomics also includes the environmental variables thereof.3–5 These disciplines are useful in clinical practice to predict the individual response of patients to different drugs, especially for the treatment of autoimmune diseases.6 Rheumatoid arthritis (RA) is a chronic heterogeneous autoimmune disease that causes inflammation in the synovial membrane, the cartilage and the bone; and over time it generates deformity, disability and deterioration in the quality of life.7,8 Among the drugs used in its treatment are the inhibitors of tumor necrosis factor alpha (TNF-α) etanercept, infliximab, adalimumab, which report a response rate of 40%, and methotrexate (MTX) with 50%.8 This variability can occur due to genetic single-nucleotide polymorphisms that affect the pharmacokinetics and pharmacodynamics of these drugs.

A systematic review of the International Journal of Rheumatology in 2013 reports that approximately 50% of patients with RA in Europe interrupt their TNF-α inhibitor during the first 5 years due to problems of effectiveness or safety of the respective medication.9 Similarly, the Brigham and Women's Hospital Rheumatoid Arthritis Sequential Study (BRASS), conducted in Boston, reports that 42% of patients with RA informed the withdrawal of their anti-TNF-α treatment.10 In this context of a large number of patients who discontinue the treatment with anti-TNF-α, the generation of information that improves the ability to predict which patients will respond to specific therapies would be a significant contribution in the proper management of RA.

The mentioned problems of effectiveness and safety could be associated with the genetic variability of each patient, including the environmental variables, which are expressed by genetic polymorphisms. In general, a genetic polymorphism is a variation in a determined DNA sequence present in more than 1% of the individuals of a population.11 According to the Canary Institute for Cancer Research “they are classified into: variable number of tandem repeats polymorphism (VNTR), restriction fragment length polymorphisms (RFLP) and single nucleotide polymorphisms (SNP)”.12 In this context, the genetic variability is associated in 90% with SNPs, due to the activity of the genes dependent on enzymes involved in the pharmacokinetics or pharmacodynamics of the drugs used in the treatment of RA, thus affecting their efficacy and safety.13

RA is a major public health problem; in the last years, better health outcomes have been achieved with the incorporation of synthetic and biological disease modifying drugs. However, problems of variability in response are reported, which lead to ineffectiveness and adverse reactions in 30%–40% of patients.14 In this sense, pharmacogenomics, through the study of genetic variants of proteins involved in the pharmacokinetics and pharmacodynamics of the drugs, becomes a way to maximize the efficacy and safety of the pharmacotherapy. In this aspect, pharmacogenomics favors a better understanding of the biological mechanisms and thus, the development of clinical models that predict the antirheumatic drug with greater benefit for each patient.

It is estimated that at 10 years of evolution of the RA, almost 80% of patients have some degree of limitation. The prognosis is uncertain and the lesions, which appear in the first years of disease, may continue despite clinical improvement, since the pathogenesis of these lesions may differ from a simple acute joint inflammation.15

Common risk factors regarding the development of RA, such as smoking, female sex, the presence of HLA DRB1 and the educational level, have been found in Colombia.16

Epidemiological data

In Canada and the United States the prevalence ranges between 0.8% and 1.1%.17,18 Similarly, the data of prevalence in Europe range between 0.5% and 1%.19,20 In Latin America, it has been reported between 0.45% and 0.9%.21–23 On the other hand, different studies show that the incidence of RA tends to decrease; thus, between 1955 and 1994 the incidence would have been reduced by 50%.24 In Europe, the reported incidence rates of RA range between 0.009%–0.045%; in North America they vary between 0.024%–0.075% in Caucasian population and between 0.09%–0.89% in American Indian population. Although it is not clear, several factors have been proposed to explain the differences in incidence, among which are genetic, environmental and cultural factors.25

Etiology and pathogenesis of rheumatoid arthritis

RA is characterized by the presence of rheumatoid factor and anti-citrullinated peptide antibodies. It is observed in the initial phase of RA and involves the activation of both T and B cells. Proinflammatory cytokines, such as TNF, IL-1 and IL-17, stimulate the inflammation and degradation of bone and cartilage. However, there is no decrease in the number of Treg cells, which could contribute to the pathophysiology of the disease.26

Genetic susceptibility

It is estimated that up to 66% of patients with RA have genetic risk, which has been associated with the presence of certain alleles of the major histocompatibility complex, especially with the HLA-DR4 type. In this sense, it is accepted that the disease is associated with a given genetic load that generates a greater susceptibility to the immune response against an antigen (Ag) and thus, inflammation of the synovial membrane and osteoarticular destruction is generated.27

Globally, individuals respond to pharmacotherapy in a different way and no medication is 100% effective in all patients,28 which may be due to an alteration in the pharmacokinetics and pharmacodynamics of the drugs associated with genetic-environmental conditions.29 In this context, the study of pharmacogenomic candidate genes has been more successful than the study of the candidate genes of the disease in identifying and explaining the variation of the pharmacological response,30 which has favored personalized prescription.31 Within this framework, it is necessary to have systematic information on the pharmacogenomics of RA, identifying polymorphisms of clinical relevance in the response and toxicity of TNF-α inhibitors and methotrexate. This type of information could contribute to the development of genetic tools to support the pharmacotherapeutic decision and improve the response to the treatment of this disease. Therefore, the objective of this work was to identify the polymorphisms to be used in the design of the specific sequencing test in patients with RA before the prescription of infliximab, adalimumab, etanercept and methotrexate.

Methods

Systematic review in PubMed/Medline. To identify the studies, a search in PubMed/Medline was conducted from September 2011 to September 2016, without limits in language and type of study, using the terms: “rheumatoid arthritis” and “pharmacogenomic” and “polymorphisms” and “methotrexate” and “infliximab” and “adalimumab” and “etanercept”. Specifically, it was contemplated the combination of keywords and filters: “rheumatoid arthritis” [MeSH Terms] AND “pharmacogenomic” [MeSH Terms] AND “polymorphisms” [MeSH Terms] AND “methotrexate” [MeSH Terms] AND “infliximab” [MeSH Terms] AND “adalimumab” [MeSH Terms] and “etanercept” [MeSH Terms]. Studies that reported polymorphisms of a single nucleotide and that affected the efficacy and safety of infliximab, adalimumab, etanercept and methotrexate were defined as inclusion criteria.

Data extraction

The articles that met the inclusion criteria were analyzed for data extraction. It was created a data collection form that included: the author and reference of the article reporting the polymorphism, the medication(s) studied, the type of study, the year of publication, the population, the polymorphism of interest, its manifestation and the report or not of pharmacodynamic or pharmacokinetic variability. Finally, each identified polymorphism was searched in Hap Map, in order to identify the gene to which it belongs, together with its alias, the organism, lineage, location and exon.

Results

Applying the defined search criteria, 164 articles were found (25 related to infliximab, 24 to adalimumab, 35 to etanercept and 80 to methotrexate), of which 47 were repeated, remaining 117. Of this group of 117 articles, 19 met the inclusion criteria (Fig. 1). Of the 19 articles, two reported polymorphisms that affect the pharmacokinetics of infliximab, adalimumab, etanercept and methotrexate, which are associated with increased plasma concentrations, while 17 articles identified polymorphisms that affect their pharmacodynamics, which is associated with blockade of receptors and is manifested by ineffectiveness of the drugs (Table 1).

Fig. 1.

Flow chart for screening and selection of evidence.

(0.49MB).
Table 1.

Single nucleotide polymorphisms associated with variability in pharmacokinetics and pharmacodynamics of methotrexate and tumor necrosis factor inhibitors: infliximab, etanercept, adalimumab.

Author/reference  Drug  Type of study  Year  Population  SNP code  Polymorphism of interest  Pharmacokinetic variability  Pharmacodynamic variability  Manifestation 
Lee YH, Bae SC32  Infliximab, Etanercept, Adalimumab  Metaanalysis  2014  European  rs10919563 PTPRC G  Not reported  Prevents the blockade of the interaction between TNF-α and the binding sites (p55 and p75 portions) of the cell surface receptors for TNF-α  Ineffectiveness 
Sode J33  Infliximab, Etanercept, Adalimumab  Case-control  2015  Danish  NLRP3 (rs10754558)  Not reported  Prevents the blockade of the interaction between TNF-α and the binding sites (p55 and p75 portions) of the cell surface receptors for TNF-α  Ineffectiveness 
Montes A34  Infliximab  Cohorts  2014  Spanish  FCGR2A H131R  Not reported  Prevents the blockade of the interaction between TNF-α and the binding sites (p55 and p75 portions) of the cell surface receptors for TNF-α  Ineffectiveness 
Dávila-Fajardo CL35  Infliximab  Cohorts  2014  Spanish  174C (rs1800795) polymorphism  Not reported  Prevents the blockade of the interaction between TNF-α and the binding sites (p55 and p75 portions) of the cell surface receptors for TNF-α  Ineffectiveness 
Morales-Lara36  Infliximab  Cohorts  2012  European  TNFR1A  Not reported  Prevents the blockade of the interaction between TNF-α and the binding sites (the p55 and p75 portions) of the cell surface receptors for TNF-α  Ineffectiveness 
Honne K37  Etanercept  Cohorts  2016  Japanese  BACH2 (6q15)  Not reported  Prevents the blockade of the interaction between TNF-α and the binding sites (p55 and p75 portions) of the cell surface receptors for TNF-α  Ineffectiveness 
Canhão H38  Infliximab, Etanercept, Adalimumab  Cohorts  2015  South European  rs3761847 SNP in the TRAF1/C5 region  Not reported  Prevents the blockade of the interaction between TNF-α and the receptors  Ineffectiveness 
Montes A39, Morales-Lara40  Etanercept  Review  2014  European  SNP -308 A/A  Not reported  Prevents the blockade of the interaction between TNF-α and the receptors  Ineffectiveness 
Muralidharan N41, Salazar J42  Methotrexate  Case-control  2016  South Indian  ATIC 347C>G  Not reported  Associated with gastrointestinal safety problems  Presence of gastrointestinal adverse drug reactions 
Moya P43, Lee YH44  Methotrexate  Cohorts  2015  European  10, 11, 12  Three ABCB1 SNPs, rs868755, rs10280623 and rs1858923  Not reported  Associated with increased toxicity  Presence of adverse drug reactions 
Ghodke-Puranik Y45  Methotrexate  Cohorts  2015  Indian  13,14  GGH, SHMT1 and TS  The polymorphisms in genes of the folate -MTX pathway contribute to the MTX response and affect the concentrations of MTX in Indian patients with RA  NA  Presence of adverse drug reactions 
Ghodke-Puranik Y45  Methotrexate  Cohorts  2015  Indian  15  TS5′UTR and SHMT1  Increases plasma levels of MTX  NA  Presence of adverse drug reactions 
Uribarri M46, Chaabane S47  Methotrexate  Cohorts  2015  European  16  C677T (rs1801133)  Not reported  Associated with problems of effectiveness and safety  Ineffectiveness and ADR 
Lima A48  Methotrexate  Cohorts  2015  European  17  SLC22A11  Not reported  Associated with low response  Ineffectiveness 
Muralidharan N49  Methotrexate  Cohorts  2015  Indian  18  3435C MDR1>T  Not reported  Associated with toxicity  Presence of clinical adverse drug reactions 
Lima A50  Methotrexate  Cohorts  2014  Portuguese  19, 20  SLC19A1, SLC46A1 and genotypes SLCO1B1  Not reported  Associated with toxicity  Presence of adverse drug reactions 
Lima A50  Methotrexate  Cohorts  2014  Portuguese  21  SLC19A1 and SLCO1B1 genotypes and haplotypes SLC19A1  Not reported  Associated with toxicity  Presence of gastrointestinal adverse drug reactions 
Samara SA51  Methotrexate  Cohorts  2014  Jordanian  22,23  G80A RFC1 andC3435T MDR1  Not reported  Associated with toxicity  ADR 

The 19 selected articles correspond to European, Japanese, Jordanian and Indian populations and they report the following 23 single nucleotide polymorphisms: rs10919563 PTPRC G, NLRP3 (rs10754558), FCGR2A H131R, 174C (rs1800795), TNFR1A, BACH2 (6q15), rs3761847 SNP in the TRAF1/C5 region, SNP -308 A/A, ATIC 347C>G, ABCB1 rs868755, rs10280623, rs1858923, GGH, SHMT1 and TS, TS5′UTR, C677T (rs1801133), SLC22A11, 3435C MDR1>T, SLC19A1, SLC46A1 and SLCO1B1, G80A RFC1 and C3435T MDR1 genotypes (Table 1). Specifically, of these 23 polymorphisms, 6 were associated with infliximab, 5 with etanercept, 3 with adalimumab and 9 with methotrexate (Fig. 1).

The search of the 23 identified polymorphisms in the HapMap database allowed to register, for each of them, the gene that encodes it, the organism in which it is manifested, its lineage, its location or locus and the exon. In this sense, of the 23 identified polymorphisms stood out (Table 2):

  • Nineteen (82.6%) correspond to the Homo sapiens species.

  • In the polypeptide sequence, the regions that are translated into amino acids come mainly from exon 10 (5 polymorphisms), from exon 29 (3 polymorphisms) and from exon 17 (2 polymorphisms).

  • The SLC gene (of different genetic families) was found associated with 4 polymorphisms, while the ABCB1 (ATP binding cassette subfamily B member 1) was found associated with 3 of the 23 polymorphisms and the MDR1 gene with 2 polymorphisms.

Table 2.

Location and exons of genes identified with single nucleotide polymorphism that affect the effectiveness and safety of infliximab, etanercept, adalimumab and methotrexate.

Number  Polymorphism  Author/Reference  Gene  Gene also known as  Organism  Lineage  Location  Exon 
rs10919563 PTPRC G  Lee YH, Bae SC32  PTPRC protein tyrosine phosphatase, receptor type C  LCA; LY5; B220; CD45; L-CA; T200; CD45R; GP180  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae  1q31.3–q32.1  34 
NLRP3 (rs10754558)  Sode J33  NLRP3 NLR family pyrin domain containing 3  AVP; FCU; MWS; FCAS; CIAS1; FCAS1; NALP3; C1orf7; CLR1.1; PYPAF1; AGTAVPRL  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae  1q44  10 
FCGR2A H131R  Montes A34  FCGR2A Fc fragment of IgG receptor Iia  CD32; FCG2; FcGR; CD32A; CDw32; FCGR2; IGFR2; FCGR2A1  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae  1q23.3  11 
Polimorfismo-174C (rs1800795)  Dávila-Fajardo CL35  IL6 interleukin 6  CDF; HGF; HSF; BSF2; IL-6; BSF-2; IFNB2; IFN-beta-2  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae  7p15.3 
TNFR1A  Morales-Lara36  TNFRSF1A TNF receptor superfamily member 1A  FPF; p55; p60; TBP1; TNF-R; TNFAR; TNFR1; p55-R; CD120a; TNFR55; TNFR60; TNF-R-I; TNF-R55  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae  12p13.31  10 
BACH2 (6q15)  Honne K37  BACH2 BTB domain and CNC homolog 2  BTBD25  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  6q15  16 
rs3761847 SNP en la región TRAF1/C5  Canhão H38  TNF receptor associated factor 1  EBI6; MGC:10353  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  9q33.2  10 
SNP -308 A/A  Montes A39, Morales-Lara40  BIVM-ERCC5 readthrough  ERCC5-202  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  13q33.1  23 
ATIC 347C>G  Muralidharan N41, Salazar J42  ATIC 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase  PURH; AICAR; AICARFT; IMPCHASE; HEL-S-70p  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  2q35  17 
10  Tres ABCB1 SNPs, rs868755  Moya P43, Lee YH44  ABCB1 ATP binding cassette subfamily B member 1  CLCS; MDR1; P-GP; PGY1; ABC20; CD243; GP170  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  7q21.12  29 
11  Tres ABCB1 SNPs, rs10280623  Moya P43, Lee YH44  ABCB1 ATP binding cassette subfamily B member 1  CLCS; MDR1; P-GP; PGY1; ABC20; CD243; GP170  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  7q21.12  29 
12  Tres ABCB1 SNP rs1858923  Moya P43, Lee YH44  ABCB1 ATP binding cassette subfamily B member 1  CLCS; MDR1; P-GP; PGY1; ABC20; CD243; GP170  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  7q21.12  29 
13  GGH  Ghodke-Puranik Y45  GGH gamma-glutamyl hydrolase  GH  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  8q12.3  10 
14  SHMT1  Ghodke-Puranik Y45  SHMT1 serine hydroxymethyltransferase 1  SHMT; CSHMT  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  17p11.2  14 
15  TS5′UTR  Ghodke-Puranik Y45  ADAMTS5  Not reported  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  Chromosome 1 
16  C677T (rs1801133)  Uribarri M46, Chaabane S47  MTHFR methylenetetrahydrofolate reductase  Not reported  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  1p36.22  13 
17  SLC22A11  Lima A48  SLC22A11 solute carrier family 22 member 11  OAT4; hOAT4  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  11q13.1  10 
18  3435C MDR1>T  Muralidharan N49  MDR1 multidrug-resistance transporter  Not reported  Scheffersomyces stipitis CBS 6054  Eukaryota; Fungi; Dikarya; Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Debaryomycetaceae; Scheffersomyces  Chromosome: 6 
19  SLC19A1  Lima A50  SLC19A1 solute carrier family 19 member 1  CHMD; FOLT; IFC1; REFC; RFC1  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  21q22.3  17 
20  SLC46A1  Lima A50  SLC46A1 solute carrier family 46 member 1  G21; HCP1; PCFT  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  17q11.2 
21  SLCO1B1  Lima A50  SLCO1B1 solute carrier organic anion transporter family member 1B1  LST1; HBLRR; LST-1; OATP2; OATPC; OATP-C; OATP1B1; SLC21A6  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  12p12.1  15 
22  G80A RFC1  Samara SA51  RFC1 replication factor C subunit 1  A1; RFC; PO-GA; RECC1; MHCBFB; RFC140  Homo sapiens  Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo  4p14  25 
23  C3435T MDR1  Samara SA51
 
MDR1 Major Facilitator Transporter; benomyl/methotrexate resistance; aka BMR; closest S. cerevisiae gene is FLR1 (YBR008C) multidrug transporter  Not reported  Candida albicans SC5314 (strain: SC5314)  Eukaryota; Fungi; Dikarya; Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; mitosporic Saccharomycetales; Candida  Chromosome 6 
Discussion and conclusions

In RA, drugs such as methotrexate and TNF-α inhibitors like infliximab, adalimumab and etanercept are very important to achieve remission in patients; however, the genetic variability of the individuals implies that the capacity of response and toxicity to these medicines is different and that the reported rates are lower than 60%.8 Pharmacogenomics deals with the possible associations of genetic polymorphisms with responses to drugs, it is a branch of medical science that is still in its initial phase and requires more time to demonstrate positive results, so it depends on a good articulation between the research sector, legislation, pharmaceuticals companies and healthcare institutions that in the future, medicines can be developed for the benefit of improving health conditions and cost of treatments in small target groups; likewise, the value of non-genetic variables in the progression of a disease, such as age, gender, diet and lifestyle, which are also key in the response to a therapy, should not be left aside.

The relevance of this study consists in providing the possibility of applying the research of candidate genes selected for their biological importance, either in the kinetics or because of their relationship in the pharmacological action, in the identification of individuals at risk of experiencing adverse effects or with probability of being resistant to treatment. Therefore, it is expected that the information generated would be susceptible to be used in the design of specific sequencing tests, contributing to identify the best therapeutic option (greater effectiveness and safety) in patients with RA.18

In the treatment of RA, the possibility of associating certain polymorphisms with the efficiency of the treatment, reducing the adverse effects of the use of a drug, can be of great value both for the patient and for the medical practice and its economic aspect.1 The results obtained with this systematic review are a basis for the design of the specific sequencing test in patients with RA before the prescription of infliximab, adalimumab, etanercept and methotrexate; hence the importance of designing and validating with multicenter studies specific genomic tests that contribute to a personalized prescription to improve the effectiveness and safety of treatments with these drugs and achieve lower healthcare costs. The identification of the 23 polymorphisms of clinical relevance obtained with the review is very important for the design of genomic tests; however, it is necessary to include other genes in the multicentre studies, during exome sequencing, before validating and standardizing a test for use in clinical practice.

Conflicts of interest

The authors declare they do not have any conflict of interest.

Acknowledgements

University of Antioquia, Colciencias, University Hospital Pablo Tobón Uribe.

References
[1]
C.T. Caskey.
Using genetic diagnosis to determine individual therapeutic utility.
[2]
S. Broder, J.C. Venter.
Sequencing the entire genomes of free-living organisms: the foundation of pharmacology in the new millennium.
Annu Rev Pharmacol Toxicol, 40 (2000), pp. 97-132
[3]
Genetic Alliance; The New York-Mid-Atlantic Consortium for Genetic and Newborn Screening Services.
Understanding genetics: a New York, mid-Atlantic guide for patients and health professionals.
Genetic Alliance, (2009 July 8),
[4]
H.L. McLeod, W.E. Evans.
Pharmacogenomics: unlocking the human genome for better drug therapy. Department of Medicine, Division of Oncology, Washington University Medical School, St. Louis, Missouri.
Ann Rev Pharmacol Toxicol, 41 (2001), pp. 101-121
(Volume publication date April 2001)
[5]
D.L. Hertz, J. Rae.
Pharmacogenetics of cancer drugs.
[6]
Andrade, Luis E.C. Future perspective for diagnosis in autoimmune diseases. Anais da Academia Brasileira de Ciências. vol.81 no.3 Rio de Janeiro Sept. 2009. On-line versión 1678-269 Divisão de Reumatologia, Universidade Federal de São Paulo, Escola de Medicina, Rua Botucatu, São Paulo, SP, Brasil. Disponible en: https://doi.org/10.1590/S0001-37652009000300004.
[7]
D.D. Rielly, P. Rahman.
Pharmacogenetics of rheumatoid arthritis: potential targets from susceptibility genes and present therapies.
Pharmacogenom Personal Med, 3 (2010), pp. 15-31
[8]
P. Tougaard, K.A. Zervides, S. Skov, A.K. Hansen, A.E. Pedersen.
Biologics beyond TNF-α inhibitors and the effect of targeting the homologues TL1A-DR3 pathway in chronic inflammatory disorders.
Immunopharmacol Immunotoxicol, 38 (2016), pp. 29-38
[9]
A. Arora, A. Mahajan, D. Spurden, H. Boyd, D. Porter.
Long-term drug survival of TNF inhibitor therapy in RA patients: a systematic review of European national drug registers.
Int J Rheumatol, 2013 (2013), pp. 764518
[10]
S.K. Agarwal, R.J. Glass, N.A. Shadick, J.S. Coblyn, R.J. Anderson, N.E. Maher, et al.
Predictors of discontinuation of tumor necrosis factor inhibitors in patients with rheumatoid arthritis.
J Rheumatol, 35 (2008), pp. 1737-1744
[11]
Arribas Ignacio Andrés. Farmacogenética y Variabilidad Interindividual En: La Respuesta a los Medicamentos 23 de Marzo de 2010. Academia de farmacia «Reino de Aragón» Zaragoza, [consulta el 5 de Abril de 2016]. Disponible en: http://www.academiadefarmaciadearagon.es/docs/documentos/documento21.pdf.
[12]
Instituto Canario de Investigación del Cáncer. Res J ISS 1697-6452 [consulta el 25 de Abril de 2016]. Disponible en: http://www.biocancer.com/journal/272/3-la-variacion-genica.
[13]
E. Tanaka, A. Taniguchi, W. Urano, H. Yamanaka, N. Kamatani.
Pharmacogenetics of disease-modifying anti-rheumatic drugs.
Best Pract Res Clin Rheumatol, 18 (2004), pp. 33-47
[14]
R. Prajapati, D. Plant, A. Barton.
Genetic and genomic predictors of anti-TNF response.
Pharmacogenomics, 12 (2011), pp. 1571-1585
[15]
P. Benito Ruiz, A. Pros Simón.
¿Por qué un tratamiento precoz en la artritis reumatoide?.
Medifam, 11 (2001),
[16]
Muñetón Gerardo Antonio, Quintana, Gerardo.
La epidemiología de la artritis reumatoide.
Rev Colomb Reumatol, 22 (2015), pp. 145-147
[17]
R. Prajapati, D. Plant, A. Barton.
Genetic and genomic predictors of anti-TNF response.
Pharmacogenomics, 12 (2011), pp. 1571-1585
[18]
S. Zhou, Y. Di, E. Chan, Y. Du, V. Chow, C. Xue, et al.
Clinical pharmacogenetics and potential application in personalized medicine.
Curr Drug Metab, 9 (2008), pp. 738-784
[19]
J. Widdifield, J. Paterson, S. Bernatsky, K. Tu, G. Tomlinson, B. Kuriya, et al.
The epidemiology of rheumatoid arthritis in Ontario Canada.
Arthritis Rheumatol, 66 (2014), pp. 786-793
[20]
J. Malemba, J. Mbuyi-Muamba, J. Mukaya, X. Bossuyt, P. Verschueren, R. Westhovens.
The epidemiology of rheumatoid arthritis in Kinshasa Democratic Republic of Congo – a population-based study.
Rheumatology, 51 (2012), pp. 1644-1647
[21]
M. Neovius, J.F. Simard, J. Askling.
Nationwide prevalence of rheumatoid arthritis and penetration of disease-modifying drugs in Sweden.
Ann Rheum Dis, 70 (2011), pp. 624-629
[22]
D. Scublinsky, H. Venarotti, G. Citera, O. Messina, E. Scheines, O. Rillo, et al.
The prevalence of rheumatoid arthritis in Argentina: a capture-recapture study in a city of Buenos Aires province.
J Clin Rheumatol, 16 (2010), pp. 317-321
[23]
E.R. Senna, A.L. de Barros, E.O. Silva, I.F. Costa, L.V. Pereira, R.M. Ciconelli, et al.
Prevalence of rheumatic diseases in Brazil: a study using the COPCORD approach.
J Rheumatol, 31 (2004), pp. 594-597
[24]
A. Silman.
The changing face of rheumatoid arthritis: why the decline in incidence?.
Arthrit Rheumat, 46 (2002), pp. 579-581
[25]
J.D. Gorman, R.F. Lum, J.J. Chen.
Impact of shared epitope genotype and ethnicityon erosive disease: a meta-analysis of 3240 rheumatoid arthritis patients.
Arthritis Rheum, 50 (2004), pp. 400-412
[26]
S. Mateen, A. Zafar, S. Moin, A.Q. Khan, S. Zubair.
Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis.
Clin Chim Acta, 455 (2016), pp. 161-171
[27]
L. Uribe, L. Gómez, P. Amariles.
Guía de actuación farmacéutica en pacientes con artritis reumatoide.
Medicarte, (2010),
[28]
G. Wilkinson.
Drug metabolism and variability among patients in drug response.
N Engl J Med, 352 (2005), pp. 2211-2221
[29]
P. Wijnen, R. Op den Buijsch, M. Drent, P. Kuijpers, P. Kuipers, C. Neef, et al.
The prevalence and clinical relevance of cytochrome P450 polymorphisms.
Aliment Pharmacol Ther, 26 (2007), pp. 211-219
[30]
J. Johnson, L. Cavallari.
Pharmacogenetics and cardiovascular disease-implications for personalized medicine.
Pharmacol Rev, 65 (2013), pp. 987-1009
[31]
Duke Medicine. 2011. Personalized medicine. En: USA News publicado el 20 de enero de 2011. Disponible en: http://health.usnews.com/health-conditions/cancer/personalized-medicine.
[32]
Y.H. Lee, S.C. Bae.
Associations between PTPRC rs10919563 A/G and FCGR2A R131H polymorphisms and responsiveness to TNF blockers in rheumatoid arthritis: a meta-analysis.
Rheumatol Int, 36 (2016), pp. 837-844
Epub 2016 Apr 13 PMID: 27074847
[33]
J. Sode, U. Vogel, S. Bank, P.S. Andersen, M.L. Hetland, H. Locht, et al.
Genetic variations in pattern recognition receptor loci are associated with anti-TNF response in patients with rheumatoid arthritis.
PLoS One, 10 (2015), pp. e0139781
[34]
A. Montes, E. Pérez-Pampin, J. Narváez, J.D. Cañete, F. Navarro-Sarabia, V. Moreira, et al.
Association of FCGR2A with the response to infliximab treatment of patients with rheumatoid arthritis.
Pharmacogenet Genom, 24 (2014), pp. 238-245
[35]
C.L. Dávila-Fajardo, A. Márquez, D. Pascual-Salcedo, M.J. Moreno Ramos, R. García-Portales, C. Magro, et al.
Confirmation of -174G/C interleukin-6 gene promoter polymorphism as a genetic marker predicting antitumor necrosis factor treatment outcome.
Pharmacogenet Genom, 24 (2014), pp. 1-5
[36]
M.J. Morales-Lara, J.D. Cañete, D. Torres-Moreno, M.V. Hernández, F. Pedrero, R. Celis, et al.
Effects of polymorphisms in TRAILR1 and TNFR1A on the response to anti-TNF therapies in patients with rheumatoid and psoriatic arthritis.
Joint Bone Spine, 79 (2012), pp. 591-596
[37]
K. Honne, I. Hallgrímsdóttir, C. Wu, R. Sebro, N.P. Jewell, T. Sakurai, et al.
A longitudinal genome-wide association study of anti-tumor necrosis factor response among Japanese patients with rheumatoid arthritis.
Arthritis Res Ther, 18 (2016),
[38]
H. Canhão, A.M. Rodrigues, M.J. Santos, D. Carmona-Fernandes, B.F. Bettencourt, J. Cui, et al.
TRAF1/C5 but not PTPRC variants are potential predictors of rheumatoid arthritis response to anti-tumor necrosis factor therapy.
Biomed Res Int, 2015 (2015), pp. 490295
[39]
A. Montes, E. Perez-Pampin, B. Joven, P. Carreira, A. Fernández-Nebro, M. Del Carmen Ordóñez, et al.
FCGR polymorphisms in the treatment of rheumatoid arthritis with Fc-containing TNF inhibitors.
Pharmacogenomics, 16 (2015), pp. 333-345
[40]
M.J. Morales-Lara, J.D. Cañete, D. Torres-Moreno, M.V. Hernández, F. Pedrero, R. Celis, et al.
Effects of polymorphisms in TRAILR1 and TNFR1A on the response to anti-TNF therapies in patients with rheumatoid and psoriatic arthritis.
Joint Bone Spine, 79 (2012), pp. 591-596
[41]
N. Muralidharan, C.M. Mariaselvam, V.K. Jain, R. Gulati, V.S. Negi.
ATIC 347C>G gene polymorphism may be associated with methotrexate-induced adverse events in south Indian Tamil rheumatoid arthritis.
Pharmacogenomics, 17 (2016), pp. 241-248
[42]
J. Salazar, P. Moya, A. Altés, C. Díaz-Torné, J. Casademont, D. Cerdà-Gabaroi, et al.
Polymorphisms in genes involved in the mechanism of action of methotrexate: are they associated with outcome in rheumatoid arthritis patients?.
Pharmacogenomics, 15 (2014), pp. 1079-1090
[43]
P. Moya, J. Salazar, M.J. Arranz, C. Díaz-Torné, E. del Río, J. Casademont, et al.
Methotrexate pharmacokinetic genetic variants are associated with outcome in rheumatoid arthritis patients.
Pharmacogenomics, 17 (2016), pp. 25-29
[44]
Y.H. Lee, S.C. Bae, G.G. Song.
Association of the ABCB1 C3435T polymorphism with responsiveness to and toxicity of DMARDs in rheumatoid arthritis: a meta-analysis.
Z Rheumatol, 75 (2016), pp. 707-715
[45]
Y. Ghodke-Puranik, A.S. Puranik, P. Shintre, K. Joshi, B. Patwardhan, J. Lamba, et al.
Folate metabolic pathway single nucleotide polymorphisms: a predictive pharmacogenetic marker of methotrexate response in Indian (Asian) patients with rheumatoid arthritis.
Pharmacogenomics, 16 (2015), pp. 2019-2034
[46]
M. Uribarri, O. Ruiz-Larrañaga, D. Arteta, L. Hernández, M.C. Alcaro, A. Martínez, et al.
Influence of MTHFR C677T polymorphism on methotrexate monotherapy discontinuation in rheumatoid arthritis patients: results from the GAPAID European project.
Clin Exp Rheumatol, 33 (2015), pp. 699-705
[47]
S. Chaabane, S. Marzouk, R. Akrout, M. Ben Hamad, Y. Achour, A. Rebai, et al.
Genetic determinants of methotrexate toxicity in tunisian patients with rheumatoid arthritis: a study of polymorphisms involved in the MTX metabolic pathway.
Eur J Drug Metab Pharmacokinet, 41 (2016), pp. 385-393
[48]
A. Lima, M. Bernardes, R. Azevedo, R. Medeiros, V. Seabra.
Pharmacogenomics of methotrexate membrane transport pathway: can clinical response to methotrexate in rheumatoid arthritis be predicted?.
Int J Mol Sci, 16 (2015), pp. 13760-13780
[49]
N. Muralidharan, P.T. Antony, V.K. Jain, C.M. Mariaselvam, V.S. Negi.
Multidrug resistance 1 (MDR1) 3435C>T gene polymorphism influences the clinical phenotype and methotrexate-induced adverse events in South Indian Tamil rheumatoid arthritis.
Eur J Clin Pharmacol, 71 (2015), pp. 959-965
[50]
A. Lima, M. Bernardes, R. Azevedo, J. Monteiro, H. Sousa, R. Medeiros, et al.
SLC19A1 SLC46A1 and SLCO1B1 polymorphisms as predictors of methotrexate-related toxicity in Portuguese rheumatoid arthritis patients.
Toxicol Sci, 142 (2014), pp. 196-209
[51]
S.A. Samara, Y.M. Irshaid, K.N. Mustafa.
Association of MDR1 C3435T and RFC1 G80A polymorphisms with methotrexate toxicity and response in Jordanian rheumatoid arthritis patients.
Int J Clin Pharmacol Ther, 52 (2014), pp. 746-755

Please cite this article as: Puentes Osorio Y, Amariles Muñoz P, Aristizábal Bernal BH, Pinto Peñaranda LF, Calleja Hernández MÁ. Farmacogenómica de etanercept, infliximab, adalimumab y metotrexato en artritis reumatoide. Revisión estructurada. Rev Colomb Reumatol. 2018;25:22–37.

Copyright © 2017. Asociación Colombiana de Reumatología
Descargar PDF
Opciones de artículo