array:24 [ "pii" => "S2341192915000864" "issn" => "23411929" "doi" => "10.1016/j.redare.2015.10.002" "estado" => "S300" "fechaPublicacion" => "2016-03-01" "aid" => "631" "copyright" => "Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor" "copyrightAnyo" => "2015" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Revista Española de Anestesiología y Reanimación (English Version). 2016;63:149-58" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 96 "formatos" => array:3 [ "EPUB" => 7 "HTML" => 72 "PDF" => 17 ] ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S003493561500170X" "issn" => "00349356" "doi" => "10.1016/j.redar.2015.06.011" "estado" => "S300" "fechaPublicacion" => "2016-03-01" "aid" => "631" "copyright" => "Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Rev Esp Anestesiol Reanim. 2016;63:149-58" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 404 "formatos" => array:3 [ "EPUB" => 5 "HTML" => 128 "PDF" => 271 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original</span>" "titulo" => "La respuesta de la saturación dinámica muscular en cirugía no cardiaca se altera pese a la terapia hemodinámica dirigida por objetivos" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "149" "paginaFinal" => "158" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Dynamic muscle O<span class="elsevierStyleInf">2</span> saturation response is impaired during major non-cardiac surgery despite goal-directed haemodynamic therapy" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1838 "Ancho" => 3063 "Tamanyo" => 335572 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Evolución temporal de la frecuencia cardiaca (A), presión arterial media (B), índice de volumen sistólico (C), administración de noradrenalina (D), temperatura (E) y saturación venosa central (F) de los pacientes del estudio.</p> <p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Los datos se expresan como mediana (rango intercuartílico) durante el tiempo de la cirugía y el análisis no paramétrico para los cambios sistemáticos en el tiempo de las variables de los datos longitudinales se expresan con su correspondiente valor p.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "A. Feldheiser, O. Hunsicker, L. Kaufner, J. Köhler, H. Sieglitz, R. Casans Francés, K.-D. Wernecke, J. Sehouli, C. Spies" "autores" => array:9 [ 0 => array:2 [ "nombre" => "A." "apellidos" => "Feldheiser" ] 1 => array:2 [ "nombre" => "O." "apellidos" => "Hunsicker" ] 2 => array:2 [ "nombre" => "L." "apellidos" => "Kaufner" ] 3 => array:2 [ "nombre" => "J." "apellidos" => "Köhler" ] 4 => array:2 [ "nombre" => "H." "apellidos" => "Sieglitz" ] 5 => array:2 [ "nombre" => "R." "apellidos" => "Casans Francés" ] 6 => array:2 [ "nombre" => "K.-D." "apellidos" => "Wernecke" ] 7 => array:2 [ "nombre" => "J." "apellidos" => "Sehouli" ] 8 => array:2 [ "nombre" => "C." "apellidos" => "Spies" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2341192915000864" "doi" => "10.1016/j.redare.2015.10.002" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2341192915000864?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S003493561500170X?idApp=UINPBA00004N" "url" => "/00349356/0000006300000003/v1_201602190102/S003493561500170X/v1_201602190102/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2341192916000093" "issn" => "23411929" "doi" => "10.1016/j.redare.2015.11.002" "estado" => "S300" "fechaPublicacion" => "2016-03-01" "aid" => "664" "copyright" => "Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Revista Española de Anestesiología y Reanimación (English Version). 2016;63:159-67" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 503 "formatos" => array:3 [ "EPUB" => 6 "HTML" => 343 "PDF" => 154 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Continuing education</span>" "titulo" => "Ultrasound guided nerve block for breast surgery" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "159" "paginaFinal" => "167" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Bloqueos guiados por ultrasonidos para cirugía mamaria" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1882 "Ancho" => 2917 "Tamanyo" => 648295 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">BRILMA or serratus-intercostal block. (A) Position of the transducer. Sequence of 3 ultrasound images. (B) Insertion of the needle, indicated by the arrow. (C) Injection of local anaesthetic. (D) Diffusion of local anaesthetic. LA: local anaesthetic; 5r: 5th rib; Ic m: intercostal muscles; Serr m: serratus muscle; pl: pleura.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "P. Diéguez, P. Casas, S. López, M. Fajardo" "autores" => array:4 [ 0 => array:2 [ "nombre" => "P." "apellidos" => "Diéguez" ] 1 => array:2 [ "nombre" => "P." "apellidos" => "Casas" ] 2 => array:2 [ "nombre" => "S." "apellidos" => "López" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "Fajardo" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0034935615002418" "doi" => "10.1016/j.redar.2015.11.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0034935615002418?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2341192916000093?idApp=UINPBA00004N" "url" => "/23411929/0000006300000003/v1_201603020056/S2341192916000093/v1_201603020056/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2341192915000852" "issn" => "23411929" "doi" => "10.1016/j.redare.2015.10.001" "estado" => "S300" "fechaPublicacion" => "2016-03-01" "aid" => "632" "copyright" => "Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Revista Española de Anestesiología y Reanimación (English Version). 2016;63:141-8" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 155 "formatos" => array:3 [ "EPUB" => 4 "HTML" => 109 "PDF" => 42 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Randomised trial comparing the transversus abdominis plane block posterior approach or quadratus lumborum block type <span class="elsevierStyleSmallCaps">i</span> with femoral block for postoperative analgesia in femoral neck fracture, both ultrasound-guided" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "141" "paginaFinal" => "148" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Ensayo clínico aleatorizado comparando bloqueo del plano transverso abdominal con abordaje posterior o bloqueo del cuadrado lumbar tipo <span class="elsevierStyleSmallCaps">I</span> con el bloqueo femoral, ambos guiados con ultrasonidos, para analgesia postoperatoria en fractura de cuello de fémur" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1238 "Ancho" => 1650 "Tamanyo" => 88120 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Ultrasound image of QLB. Eo: external oblique, io: internal oblique, t: transversus abdominis, ql: quadratus lumborum muscles, perit: peritoneum, the arrow indicates the needle insertion point.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "T. Parras, R. Blanco" "autores" => array:2 [ 0 => array:2 [ "nombre" => "T." "apellidos" => "Parras" ] 1 => array:2 [ "nombre" => "R." "apellidos" => "Blanco" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0034935615001711" "doi" => "10.1016/j.redar.2015.06.012" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0034935615001711?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2341192915000852?idApp=UINPBA00004N" "url" => "/23411929/0000006300000003/v1_201603020056/S2341192915000852/v1_201603020056/en/main.assets" ] "en" => array:22 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Dynamic muscle O<span class="elsevierStyleInf">2</span> saturation response is impaired during major non-cardiac surgery despite goal-directed haemodynamic therapy" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "149" "paginaFinal" => "158" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "A. Feldheiser, O. Hunsicker, L. Kaufner, J. Köhler, H. Sieglitz, R. Casans Francés, K.-D. Wernecke, J. Sehouli, C. Spies" "autores" => array:9 [ 0 => array:3 [ "nombre" => "A." "apellidos" => "Feldheiser" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "O." "apellidos" => "Hunsicker" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "L." "apellidos" => "Kaufner" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 3 => array:3 [ "nombre" => "J." "apellidos" => "Köhler" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "H." "apellidos" => "Sieglitz" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 5 => array:3 [ "nombre" => "R." "apellidos" => "Casans Francés" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 6 => array:3 [ "nombre" => "K.-D." "apellidos" => "Wernecke" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 7 => array:3 [ "nombre" => "J." "apellidos" => "Sehouli" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 8 => array:4 [ "nombre" => "C." "apellidos" => "Spies" "email" => array:1 [ 0 => "claudia.spies@charite.de" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-University Medicine Berlin, Berlin, Germany" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Charité-University Medicine Berlin and SOSTANA GmbH Berlin, Berlin, Germany" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité–Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany" "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "La respuesta de la saturación dinámica muscular en cirugía no cardiaca se altera pese a la terapia hemodinámica dirigida por objetivos" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1838 "Ancho" => 3063 "Tamanyo" => 317301 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Changes over time in heart rate (A), mean arterial pressure (B), systolic volume index (C), norepinephrine administration (D), temperature (E), and central venous saturation (F). Data are shown as median (interquartile range) during surgery and the nonparametric analysis of systemic changes over time in longitudinal data is shown as the corresponding <span class="elsevierStyleItalic">p</span> value.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">In recent years, several studies shown that advanced haemodynamic monitoring can reduce postoperative morbidity and hospital length of stay.<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">1</span></a> Despite this, however, mortality following non-cardiac surgery remains high<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">2</span></a> and not even goal-directed haemodynamic algorithms to optimize stroke volume, maintain mean arterial pressure and avoid low cardiac output states by advanced haemodynamic monitoring will prevent a high rate of postoperative complications in major non-cardiac surgery.<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">3</span></a> One reason for this high complication rate could be impaired microvascular reactivity,<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">4</span></a> while altered tissue oxygen consumption may be a contributor to organ dysfunction.<a class="elsevierStyleCrossRefs" href="#bib0130"><span class="elsevierStyleSup">4,5</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">Near-infrared spectroscopy (NIRS) is an indirect method of assessing microcirculation that uses muscle O<span class="elsevierStyleInf">2</span> saturation as a surrogate variable of microvascular perfusion.<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">6</span></a> NIRS combined with a vascular occlusion test (VOT) could detect changes in microvascular reactivity by indicating an impairment of dynamic muscle O<span class="elsevierStyleInf">2</span> saturation (StO<span class="elsevierStyleInf">2</span>) response in septic<a class="elsevierStyleCrossRefs" href="#bib0145"><span class="elsevierStyleSup">7,8</span></a> and trauma patients,<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">9</span></a> associating this value with organ dysfunction and mortality.<a class="elsevierStyleCrossRefs" href="#bib0145"><span class="elsevierStyleSup">7,8</span></a> In contrast to direct visualization of the microvascular bed (e.g., with microscopy), NIRS in combination with a VOT is non-invasive and simple to use, and could be a more feasible evaluation technique, especially during limited access surgery.</p><p id="par0015" class="elsevierStylePara elsevierViewall">However, intraoperative changes in the dynamic StO<span class="elsevierStyleInf">2</span> response and their association with symptoms remain unclear. Two recent studies<a class="elsevierStyleCrossRefs" href="#bib0160"><span class="elsevierStyleSup">10,11</span></a> have evaluated the association between intraoperative absolute StO<span class="elsevierStyleInf">2</span> measurements and perioperative characteristics. In these studies, however, no goal-directed haemodynamic algorithm was used, and VOT, which gives a clearer picture of StO<span class="elsevierStyleInf">2</span> response to ischaemia and reperfusion, was not performed.</p><p id="par0020" class="elsevierStylePara elsevierViewall">The aims of this study were twofold: to investigate changes over time in dynamic muscle O<span class="elsevierStyleInf">2</span> saturation (StO<span class="elsevierStyleInf">2</span>) response shown by NIRS measurement of changes in muscle StO<span class="elsevierStyleInf">2</span> over different VOT periods; and to evaluate pre-, intra- and postoperative clinical characteristics associated with dynamic StO<span class="elsevierStyleInf">2</span> variables in ovarian cancer patients undergoing major cytoreductive surgery.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Methods</span><p id="par0025" class="elsevierStylePara elsevierViewall">This is a sub-analysis of a previously published randomized controlled trial comparing balanced crystalloid with balanced colloid infusion within a goal-directed haemodynamic algorithm (BalaCriCo, ISRCTN 53154834).<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">3</span></a> This sub-analysis investigates the significance of dynamic muscle StO<span class="elsevierStyleInf">2</span> response, including data obtained by NIRS that was not reported in the main study. All data was obtained from the per-protocol group of the BalaCriCo trial, resulting in a subset of 48 patients with metastatic ovarian carcinoma undergoing cytoreductive surgery. The study was duly registered (EudraCT 2008-006135-12; ISRCTN 53154834), and authorization to proceed was obtained from the competent German authorities (Bundesinstitut für Arzneimittel und Medizinprodukte; BfArM-Nr. 4034705) and from the corresponding independent ethics committee (Ethikkommission des Landes Berlin; Nr. EK 12 581/08). The trial was conducted at Charité – University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany, and written informed consent was obtained from all patients. Subjects were treated according to the previously published interdisciplinary clinical pathway defined by standard operating procedures accessible on the intranet of the University Hospital of the Charité–University Medicine, Berlin, Germany.<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">3</span></a></p><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Intraoperative haemodynamic management</span><p id="par0030" class="elsevierStylePara elsevierViewall">Haemodynamic management followed the previously published, goal-directed, oesophageal Doppler-guided<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">12</span></a> (ODM, CardioQ-ODM™, Deltex Medical, Chichester, UK) haemodynamic algorithm.<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">3</span></a> A brief description is given in Appendix.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Near infrared spectroscopy and vascular occlusion test</span><p id="par0035" class="elsevierStylePara elsevierViewall">After induction of anaesthesia and start of haemodynamic monitoring, a 15<span class="elsevierStyleHsp" style=""></span>mm NIRS sensor (Sensor 1615, Hutchinson Technology, Inc., Hutchinson, MN, USA) was placed on the patient's thenar eminence and connected to the InSpectra™ near-infrared spectroscopy StO<span class="elsevierStyleInf">2</span> monitor (Model 650, Hutchinson Technology, Inc., Hutchinson, MN, USA). The sensor emits light at a wavelength of 680–800<span class="elsevierStyleHsp" style=""></span>nm, and can detect 95% of StO<span class="elsevierStyleInf">2</span> to a depth of 14<span class="elsevierStyleHsp" style=""></span>mm. Continuous intraoperative StO<span class="elsevierStyleInf">2</span> values were obtained and digitally recorded every 2<span class="elsevierStyleHsp" style=""></span>s. The intraoperative vascular occlusion test (VOT) was performed every 30<span class="elsevierStyleHsp" style=""></span>min. A blood pressure cuff was placed around the upper arm and inflated to 50<span class="elsevierStyleHsp" style=""></span>mmHg above the pressure measured by the arterial line. Pressure was maintained for 3<span class="elsevierStyleHsp" style=""></span>min (arterial occlusion), and was then rapidly and completely deflated. VOT allowed us to define four different periods: pre-VOT, ischaemia, reperfusion and hyperaemia. Using InSpectra™ software (Version 4.03) we obtained the following variables for each of the foregoing VOT periods: (1) Baseline StO, pre-VOT (baseStO<span class="elsevierStyleInf">2</span>), (2) desaturation slope (desStO<span class="elsevierStyleInf">2</span>) during arterial occlusion, (3) recovery slope (recStO<span class="elsevierStyleInf">2</span>) during reperfusion, and (4) hyperaemia recovery area during hyperaemia (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><p id="par0040" class="elsevierStylePara elsevierViewall">Data were excluded from the statistical analysis, if: (a) the vascular occlusion time varied by more than 10% of 3<span class="elsevierStyleHsp" style=""></span>min; (b) the period between two VOTs was less than 15<span class="elsevierStyleHsp" style=""></span>min; and (c) the measured StO<span class="elsevierStyleInf">2</span> response curve during VOTs could not be analyzed correctly by the analysis software.</p><p id="par0045" class="elsevierStylePara elsevierViewall">The entire dataset of a particular patient was excluded because InSpectra™ near-infrared spectroscopy StO<span class="elsevierStyleInf">2</span> monitoring was not performed before the start of surgery.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Sampling and measurement of interleukin-6 and intercellular adhesion molecule 1 levels</span><p id="par0050" class="elsevierStylePara elsevierViewall">To measure plasma interleukin 6 (IL-6) and intracellular adhesion molecule-1 (ICAM-1) levels, blood samples were drawn 1 day before surgery, at 2<span class="elsevierStyleHsp" style=""></span>h after the start of surgery, at 1 and 6<span class="elsevierStyleHsp" style=""></span>h after surgery, and on postoperative days 1 and 3.</p><p id="par0055" class="elsevierStylePara elsevierViewall">Plasma IL-6 and ICAM-1 levels were measured by flow cytometry (FACSCalibur™, BD Biosciences, San Jose, CA, USA) after processing in a bead immunoassay kit (BD Biosciences).</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Data management and statistical analysis</span><p id="par0060" class="elsevierStylePara elsevierViewall">Since the main study was a randomized controlled trial, patients were randomized to receive either a balanced crystalloid or balanced colloid solution within a goal-directed algorithm. In view of the randomization process and the knowledge that colloid solutions have been seen to improve microperfusion in experimental animal models and critical patients<a class="elsevierStyleCrossRefs" href="#bib0175"><span class="elsevierStyleSup">13–16</span></a> we looked for significant correlation between any of the dynamic StO<span class="elsevierStyleInf">2</span> response variables and the randomized study groups by means of multivariate generalized estimating equation (GEE) model adjusted for multiple measurements per patient. The type of study solution given was also included in all regression analysis to adjust all other covariables.</p><p id="par0065" class="elsevierStylePara elsevierViewall">Due to the limited sample sizes and non-normal distributions of measurements, data were expressed as median [25th–75th percentile], or frequencies [%], respectively. After global testing, post hoc analyses were carried out to detect specific inter-group differences at fixed time points (Mann–Whitney tests), or intra-group difference at two time points (Wilcoxon test). A two-tailed <span class="elsevierStyleItalic">p</span>-value <0.05 was considered statistically significant. All tests have to be interpreted in the context of exploratory data analysis; therefore, no adjustments for multiple testing were made.</p><p id="par0070" class="elsevierStylePara elsevierViewall">Changes over time in study outcomes were analyzed using multivariate nonparametric analysis of longitudinal data in a bifactorial model (1st (independent) factor: groups, 2nd (dependent) factor: repetitions over time). Therefore, all time points were simultaneously compared on the corresponding response curves.</p><p id="par0075" class="elsevierStylePara elsevierViewall">The following comparisons, with their respective analyses, were performed: differences between groups (over time) (Group), systematic changes over time (over groups) (total time), group/time interactions (Group<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>Time), as well as systematic changes over time for each group (changes over time).</p><p id="par0080" class="elsevierStylePara elsevierViewall">To study clinical factors associated with the changes over time in VOT variable, desStO<span class="elsevierStyleInf">2</span> and recStO<span class="elsevierStyleInf">2</span>, regression analysis was performed using a multivariate generalized estimating equation (GEE) adjusted for multiple measurements per patient. Preoperative clinical factors, intraoperative variables and postoperative outcomes were tested in a univariate analysis before creating the multivariate GEE model for the VOT variable. Adjusted odds ratios (OR) with 95% confidence interval were calculated. To facilitate clinical interpretation of the data, the odds ratios of norepinephrine, heart rate and temperature were stepped (s.c.) at intervals of 0.1<span class="elsevierStyleHsp" style=""></span>μg<span class="elsevierStyleHsp" style=""></span>kg<span class="elsevierStyleSup">−1</span><span class="elsevierStyleHsp" style=""></span>min<span class="elsevierStyleSup">−1</span>, 5<span class="elsevierStyleHsp" style=""></span>beats<span class="elsevierStyleHsp" style=""></span>min<span class="elsevierStyleSup">−1</span> and 0.1<span class="elsevierStyleHsp" style=""></span>°C, respectively. Due to their close correlation, postoperative clinical outcomes were analyzed with univariate GEE for each VOT variable.</p><p id="par0085" class="elsevierStylePara elsevierViewall">All numerical calculations were performed with IBM<span class="elsevierStyleSup">©</span> SPSS<span class="elsevierStyleSup">©</span> Statistics (version 20, Copyright<span class="elsevierStyleSup">©</span> 1989, 2010 SPSS, Inc.), SAS, version 9.1, (Copyright<span class="elsevierStyleSup">©</span> SAS Institute, Inc., Cary, NC, USA), and R project for Statistical Computing, version 3.0.2.</p></span></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Results</span><p id="par0090" class="elsevierStylePara elsevierViewall">Of the 48 patients included in the main study, 17 were excluded because near-infrared spectroscopy was not performed during surgery. Another patient was excluded because the first measurement was obtained 3<span class="elsevierStyleHsp" style=""></span>h after start of surgery. In total, therefore, the data from 30 patients were analyzed. Neither the changes over time in absolute mean baseline StO<span class="elsevierStyleInf">2</span> levels nor the changes over time in any dynamic StO<span class="elsevierStyleInf">2</span> variables were associated with any of the randomized groups in the main study.</p><p id="par0095" class="elsevierStylePara elsevierViewall">Demographic characteristics, tumour staging and surgery performed are shown in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>, and intra- and postoperative data are outlined in <a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>. Changes over time in haemodynamic variables are shown in <a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>A–F. Patients showed an increase in heart rate and need for norepinephrine administration to maintain mean arterial pressure during the first 3<span class="elsevierStyleHsp" style=""></span>h of surgery. Stroke volume index decreased over the first 2<span class="elsevierStyleHsp" style=""></span>h, and recovered before the end of surgery. Intraoperative central venous oxygen saturation, however, increased steadily (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>A–F).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0100" class="elsevierStylePara elsevierViewall">Median baseStO<span class="elsevierStyleInf">2</span> was 85% (79.5%; 89%), and remained constant during surgery (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.3979) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>A) (Appendix Table 1, available online). However, baseStO<span class="elsevierStyleInf">2</span> showed a wide interquartile range, indicating high inter-patient variability.</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0105" class="elsevierStylePara elsevierViewall">desStO<span class="elsevierStyleInf">2</span> and recStO<span class="elsevierStyleInf">2</span> progressively decreased over the first 4<span class="elsevierStyleHsp" style=""></span>h of surgery (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0.001 and <span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.0111, respectively) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>B,C, Appendix Table 1, available online). recStO<span class="elsevierStyleInf">2</span> also showed a wide interquartile range at the start of surgery, indicating that this time point also varied considerably between patients. In contrast, intraoperative hyperaemia recovery area did not change significantly (<span class="elsevierStyleItalic">p</span><span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>0.0702) (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>D, Appendix Table 1, available online).</p><p id="par0110" class="elsevierStylePara elsevierViewall">The GEE regression analysis of the correlation between preoperative variables and changes over time in StO<span class="elsevierStyleInf">2</span> variables showed that a higher score on the nutritional risk screening system<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">17</span></a> is associated with an intraoperative decreases in desStO<span class="elsevierStyleInf">2</span> and increase in recStO<span class="elsevierStyleInf">2</span>. Higher desStO<span class="elsevierStyleInf">2</span> values were associated with a longer period of preoperative fluid deprivation (Appendix Table 2, available online).</p><p id="par0115" class="elsevierStylePara elsevierViewall">The GEE analysis of the association between intraoperative variables and mean baseline StO<span class="elsevierStyleInf">2</span> levels showed that administration of high-dose norepinephrine was associated with lower (negative) intraoperative desStO<span class="elsevierStyleInf">2</span> values, a sharper decline in StO<span class="elsevierStyleInf">2</span> during vascular occlusion, and lower recStO<span class="elsevierStyleInf">2</span>, all of which were associated with slower recovery of baseline values (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>). Furthermore, increased heart rate and lower arterial haemoglobin levels were associated with lower (negative) intraoperative desStO<span class="elsevierStyleInf">2</span> values; in other words, a steeper decline in StO<span class="elsevierStyleInf">2</span> during vascular occlusion implied an impaired StO<span class="elsevierStyleInf">2</span> response (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>). None of the VOT variables were associated with body temperature in any study patients.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0120" class="elsevierStylePara elsevierViewall">In the case of postoperative variables, lower (negative) desStO<span class="elsevierStyleInf">2</span> values during surgery, in other words, a steeper decline in StO<span class="elsevierStyleInf">2</span> during VOT, was associated with a longer hospital stay, both in the intensive care unit and on the ward, and higher score in the sequential organ failure assessment at 1 and 6<span class="elsevierStyleHsp" style=""></span>h post-surgery, and the first postoperative day. RecStO<span class="elsevierStyleInf">2</span> was not related to any postoperative patient variables (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>). Even though intraoperative temperature remained steady, there was considerable inter-patient variability, and cooling of the body surface interfered with StO<span class="elsevierStyleInf">2</span> measurements due to peripheral vasoconstriction.<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">16</span></a> Therefore, it seemed important to us to include temperature in the regression analysis to adjust all other covariables, although in itself it was not significant.</p><p id="par0125" class="elsevierStylePara elsevierViewcompact-standard">Plasma interleukin 6 (IL-6) levels increased slightly during the first 2<span class="elsevierStyleHsp" style=""></span>h of surgery, and then sharply 1<span class="elsevierStyleHsp" style=""></span>h post-surgery. They did not return to baseline levels until the third postoperative day (Fig. 2 of the Appendix, available online). Changes over time in the endothelial marker ICAM-1 decreased 2<span class="elsevierStyleHsp" style=""></span>h after the start of surgery. Postoperatively, ICAM-1 increased 6<span class="elsevierStyleHsp" style=""></span>h after surgery, and unlike IL-6, reached a peak on the first postoperative day. It did not normalize until the third postoperative day (Fig. 2 of the Appendix available online).</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Discussion</span><p id="par0130" class="elsevierStylePara elsevierViewall">Our findings evaluate the dynamic StO<span class="elsevierStyleInf">2</span> response reflected by changes in StO<span class="elsevierStyleInf">2</span> measured with NIRS during a vascular occlusion test (VOT) during major non-cardiac surgery.</p><p id="par0135" class="elsevierStylePara elsevierViewall">The main findings of the study are: (1) At the start of surgery, desStO<span class="elsevierStyleInf">2</span> and recStO<span class="elsevierStyleInf">2</span> values are similar to those measured in healthy volunteers, but during surgery dynamic muscle StO<span class="elsevierStyleInf">2</span> variables, indicative of microvascular reactivity, progressively declined; (2) surgery-induced systemic inflammation was found in all study patients. This was evidenced by increased administration of norepinephrine and increased heart rate during the first 3<span class="elsevierStyleHsp" style=""></span>h of surgery, and a peak IL-6 level immediately after surgery; and (3) decline in the dynamic StO<span class="elsevierStyleInf">2</span> response was associated with the rate of norepinephrine administration, heart rate and arterial haemoglobin rates, thus confirming the validity of intraoperative NIRS monitoring.</p><p id="par0140" class="elsevierStylePara elsevierViewall">Non-invasive NIRS has already been used to investigate changes in StO<span class="elsevierStyleInf">2</span> in trauma patients during initial care,<a class="elsevierStyleCrossRefs" href="#bib0155"><span class="elsevierStyleSup">9,18</span></a> and in patients with severe sepsis or septic shock.<a class="elsevierStyleCrossRefs" href="#bib0145"><span class="elsevierStyleSup">7,8,19–21</span></a> This, however, is the first study to assess detailed changes in intraoperative dynamic StO<span class="elsevierStyleInf">2</span> response measured by NIRS combined with a vascular occlusion test (VOT) during major non-cardiac surgery, and their association with clinical characteristics. The patients in this trial were treated within a goal-directed haemodynamic algorithm to optimize stroke volume according to the Frank–Starling mechanism by bolus administration of intravenous fluids while maintaining mean arterial blood pressure by norepinephrine administration and using inotropes to prevent low cardiac output.<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">12</span></a> Despite this, patients showed a steady deterioration in dynamic StO<span class="elsevierStyleInf">2</span> variables caused by changes in StO<span class="elsevierStyleInf">2</span> during the different VOT periods.</p><p id="par0145" class="elsevierStylePara elsevierViewall">desStO<span class="elsevierStyleInf">2</span> and recStO<span class="elsevierStyleInf">2</span> showed significant intraoperative decline, and the values measured at 3 and 4<span class="elsevierStyleHsp" style=""></span>h after the start of surgery were similar to those reported in studies in patients with severe sepsis or septic shock. In the case of recStO<span class="elsevierStyleInf">2</span> our study patients showed values of 5% (2.5%; 14.5%)/s at the beginning of surgery, comparable to the 5.20<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.19%/s values found by Gomez et al. in healthy volunteers. During surgery, our study patients showed a steady decrease in recStO<span class="elsevierStyleInf">2</span> to 3% (2.5%; 5.0%) and 2% (1.25%; 4.5%)/s after the second and third hour of surgery. These values are consistent with those reported by Mesquida et al. in septic patients (3.02<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.7%/s), by Creteur et al. in patients with severe sepsis and septic shock (3.2% [1.8%; 4.5%]/s and 2% [1.2%; 2.9%]/s, respectively)<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">7</span></a> and by Skarda et al. in septic patients (2.3<span class="elsevierStyleHsp" style=""></span>±<span class="elsevierStyleHsp" style=""></span>1.0%/s).<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">21</span></a> These results, combined with the substantial increase in heart rate and need for norepinephrine during the first 3<span class="elsevierStyleHsp" style=""></span>h of surgery, and a significant perioperative increase in IL-6, indicate that our patients transitioned from a state similar to healthy controls to a state of surgery-induced systemic inflammation at a microvascular level at 3<span class="elsevierStyleHsp" style=""></span>h after start of surgery.</p><p id="par0150" class="elsevierStylePara elsevierViewall">Basically, a change in desStO<span class="elsevierStyleInf">2</span> during occlusion could be due to a rise or fall in local oxygen consumption (VO<span class="elsevierStyleInf">2</span>). However, it could also by caused by impaired local oxygen delivery due to microcirculatory changes.<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">6</span></a> We found a steep intraoperative decline in StO<span class="elsevierStyleInf">2</span> following vascular occlusion, suggesting a gradual increase in local oxygen uptake and/or local impairment of oxygen delivery during surgery. In septic patients, other authors have shown that an initial increase in metabolic activity seems to be fuelled by an increase in cellular respiration. Prolonged sepsis leads to mitochondrial dysfunction and damage, and a down-regulation in mitochondrial protein expression.<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">5</span></a> recStO<span class="elsevierStyleInf">2</span>, meanwhile, seems to derive from the interaction of perfusion pressure and endothelial integrity.<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">6</span></a> In line with these findings, we also found a correlation between more gentle recStO<span class="elsevierStyleInf">2</span> and greater need for norepinephrine administration. Our findings are further supported by a recent study, showing that microcirculation in septic patients is predominantly characterized by a proportional decrease in perfused capillaries along with increased flow heterogeneity, which could explain the rapid decrease of desStO<span class="elsevierStyleInf">2</span> and slower increase in recStO<span class="elsevierStyleInf">2</span>.<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">22</span></a> This hypothesis is based on the observation that higher arterial haemoglobin levels are related with a more gentle decrease in desStO<span class="elsevierStyleInf">2</span> and higher heart rate, while greater need for norepinephrine is correlated with a steeper decline in desStO<span class="elsevierStyleInf">2</span> and a slower recStO<span class="elsevierStyleInf">2</span>. In our surgical patients, therefore, progressive deterioration in dynamic StO<span class="elsevierStyleInf">2</span> response during VOT could also correlate with an alteration in microperfusion. Nevertheless, the association between alteration in dynamic muscle StO<span class="elsevierStyleInf">2</span> variables and intraoperative haemodynamic variables mainly support the validity of intraoperative NIRS monitoring.</p><p id="par0155" class="elsevierStylePara elsevierViewall">Our study has some limitations. The dynamic StO<span class="elsevierStyleInf">2</span> response combined with VOT can measure microvascular reactivity, and is a feasible method that can easily be used at the bedside, and even during limited access surgical procedures. However, the main limitation is that the dynamic StO<span class="elsevierStyleInf">2</span> response combined with VOT cannot clarify the important link between deterioration in microvascular activity and microcirculation and/or tissue oxygenation and tissue oxygen consumption.<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">4</span></a> Although the level of hypnosis remained constant (bispectral index 40 and 55), the anaesthesia technique varied between patients, a factor that could have biased our results. These issues should be addressed in future studies. Furthermore, we observed that body surface cooling affects StO<span class="elsevierStyleInf">2</span> measurements due to peripheral vasoconstriction. In our study, an oesophageal temperature probe was used to measure intraoperative temperature. Although intraoperative temperature did not vary and was not associated with VOT variables in the regression analysis, both the considerable length of surgery and the use of vasoconstrictors could have affected peripheral temperature without a corresponding change in central temperature. In addition, the impact on microvascular reactivity of repetitive 3-min VOTs to recreate a situation of ischaemia-reperfusion is unclear. Finally, our sample was limited to 30 patients; therefore our findings should be confirmed in a larger study group.</p><p id="par0160" class="elsevierStylePara elsevierViewall">The use of NIRS combined with VOT during major non-cardiac surgery showed progressive deterioration in microvascular reactivity measured by dynamic StO<span class="elsevierStyleInf">2</span> variables in patients with optimal haemodynamic monitoring. These data, along with a substantial increase in intraoperative heart rate and need for norepinephrine, and observation of intraoperative inflammatory markers, indicate that study patients transitioned to a surgery-induced inflammatory response accompanied by deterioration of microvascular reactivity.</p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0105">Authors contribution</span><p id="par0165" class="elsevierStylePara elsevierViewall">Study conceived and designed by: A.F., C.S.</p><p id="par0170" class="elsevierStylePara elsevierViewall">Biometrics: K.-D.W.</p><p id="par0175" class="elsevierStylePara elsevierViewall">Data collected by: A.F., O.H., L.K., J.K., H.S, J.S.</p><p id="par0180" class="elsevierStylePara elsevierViewall">Data interpreted by: A.F., O.H., J.S., C.S.</p><p id="par0185" class="elsevierStylePara elsevierViewall">Statistical analysis performed by: K.-D.W., A.F., O.H., C.S.</p><p id="par0190" class="elsevierStylePara elsevierViewall">Manuscript written by: A.F., O.H., R.C.F., C.S.</p><p id="par0195" class="elsevierStylePara elsevierViewall">Critical review of salient points: all authors.</p><p id="par0200" class="elsevierStylePara elsevierViewall">Final revision: C.S.</p><p id="par0205" class="elsevierStylePara elsevierViewall">Funds obtained by: C.S.</p><p id="par0210" class="elsevierStylePara elsevierViewall">Study supervised by: A.F., K.-D.W., J.S., C.S.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0110">Conflict of interest</span><p id="par0215" class="elsevierStylePara elsevierViewall">All conflicts of interest have been declared. The ICMJE Conflict of Interest form was submitted to the editorial committee.</p><p id="par0220" class="elsevierStylePara elsevierViewall">This project was designed by the researchers and received unlimited funding from <span class="elsevierStyleGrantSponsor" id="gs1">Fresenius Kabi</span>, Bad Homburg, German and <span class="elsevierStyleGrantSponsor" id="gs2">Hutchinson Technology, Inc.</span>, MN, USA. The sponsors had no control over or access to the design of the study, data collection, analysis and interpretation, drafting the manuscript, or the decision to submit the manuscript for publication.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres611612" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec625584" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres611611" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec625583" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:3 [ "identificador" => "sec0010" "titulo" => "Methods" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0015" "titulo" => "Intraoperative haemodynamic management" ] 1 => array:2 [ "identificador" => "sec0020" "titulo" => "Near infrared spectroscopy and vascular occlusion test" ] 2 => array:2 [ "identificador" => "sec0025" "titulo" => "Sampling and measurement of interleukin-6 and intercellular adhesion molecule 1 levels" ] 3 => array:2 [ "identificador" => "sec0030" "titulo" => "Data management and statistical analysis" ] ] ] 6 => array:2 [ "identificador" => "sec0035" "titulo" => "Results" ] 7 => array:2 [ "identificador" => "sec0040" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0045" "titulo" => "Authors contribution" ] 9 => array:2 [ "identificador" => "sec0050" "titulo" => "Conflict of interest" ] 10 => array:2 [ "identificador" => "xack206153" "titulo" => "Acknowledgments" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2015-03-26" "fechaAceptado" => "2015-06-04" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec625584" "palabras" => array:5 [ 0 => "Goal-directed therapy" 1 => "Near-infrared spectroscopy" 2 => "Surgery" 3 => "Vascular occlusion test" 4 => "Haemodynamic" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec625583" "palabras" => array:5 [ 0 => "Terapia dirigida por objetivos" 1 => "Espectroscopia cercana a infrarrojos" 2 => "Cirugía" 3 => "Test de oclusión vascular" 4 => "Hemodinámica" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Background</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Near-infrared spectroscopy combined with a vascular occlusion test (VOT) could indicate an impairment of microvascular reactivity (MVR) in septic patients by detecting changes in dynamic variables of muscle O<span class="elsevierStyleInf">2</span> saturation (StO<span class="elsevierStyleInf">2</span>). However, in the perioperative context the consequences of surgical trauma on dynamic variables of muscle StO<span class="elsevierStyleInf">2</span> as indicators of MVR are still unknown.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Methods</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">This study is a sub-analysis of a randomized controlled trial in patients with metastatic primary ovarian cancer undergoing debulking surgery, during which a goal-directed haemodynamic algorithm was applied using oesophageal Doppler. During a 3<span class="elsevierStyleHsp" style=""></span>min VOT, near-infrared spectroscopy was used to assess dynamic variables arising from changes in muscle StO<span class="elsevierStyleInf">2</span>.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Results</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">At the beginning of surgery, values of desaturation and recovery slope were comparable to values obtained in healthy volunteers. During the course of surgery, both desaturation and recovery slope showed a gradual decrease. Concomitantly, the study population underwent a transition to a surgically induced systemic inflammatory response state shown by a gradual increase in norepinephrine administration, heart rate, and interleukin-6, with a peak immediately after the end of surgery. Higher rates of norepinephrine and a higher heart rate were related to a faster decline in StO<span class="elsevierStyleInf">2</span> during vascular occlusion.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusions</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Using near-infrared spectroscopy combined with a VOT during surgery showed a gradual deterioration of MVR in patients treated with optimal haemodynamic care. The deterioration of MVR was accompanied by the transition to a surgically induced systemic inflammatory response state.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusions" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Introducción</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">En pacientes sépticos, la espectroscopia cercana a infrarrojos combinada con un test de oclusión vascular (VOT) puede indicar alteraciones de la reactividad microvascular (RMV) detectando cambios dinámicos de la saturación de oxígeno muscular (StO<span class="elsevierStyleInf">2</span>). Sin embargo, se desconocen las consecuencias del trauma quirúrgico sobre la StO<span class="elsevierStyleInf">2</span> como indicador de RMV perioperatoria.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Métodos</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Subanálisis de un ensayo clínico aleatorizado en pacientes con metástasis de cáncer primario de ovario sometidos a cirugía citorreductora donde se aplicó un algoritmo de terapia hemodinámica dirigida a objetivo mediante doppler esofágico. Tras un VOT de 3<span class="elsevierStyleHsp" style=""></span>min, se valoraron cambios dinámicos de la StO<span class="elsevierStyleInf">2</span> muscular mediante espectroscopia cercana a infrarrojo.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Resultados</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Al inicio de la cirugía, los valores de desaturación y las pendientes de recuperación de valores basales fueron comparables a los valores obtenidos en voluntarios sanos pero ambas mostraron disminuciones progresivas durante el transcurso de la misma. Simultáneamente, la población a estudio sufrió una transición a un estado de respuesta inflamatoria sistémica por estrés quirúrgico, mostrándose por un incremento progresivo de los requerimientos de norepinefrina, de la frecuencia cardiaca y de interleucina 6, y produciéndose un pico inmediatamente tras la cirugía. Las dosis altas de norepinefrina y la frecuencia cardiaca se correlacionaron con una disminución más rápida de StO<span class="elsevierStyleInf">2</span> durante el VOT.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusiones</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">El uso combinado de espectroscopia cercana a infrarrojo y VOT durante la cirugía mostró un deterioro progresivo de la RMV en pacientes hemodinámicamente tratados de forma óptima. El deterioro de la RMV se acompañó de una transición a un estado de respuesta inflamatoria sistémica inducida por cirugía.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Introducción" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Métodos" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusiones" ] ] ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Feldheiser A, Hunsicker O, Kaufner L, Köhler J, Sieglitz H, Casans Francés R, et al. La respuesta de la saturación dinámica muscular en cirugía no cardiaca se altera pese a la terapia hemodinámica dirigida por objetivos. Rev Esp Anestesiol Reanim. 2016;63:149–158.</p>" ] ] "apendice" => array:1 [ 0 => array:1 [ "seccion" => array:1 [ 0 => array:4 [ "apendice" => "<p id="par0235" class="elsevierStylePara elsevierViewall">The following are the supplementary data to this article:<elsevierMultimedia ident="upi0005"></elsevierMultimedia></p>" "etiqueta" => "Appendix" "titulo" => "Supplementary data" "identificador" => "sec0060" ] ] ] ] "multimedia" => array:7 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1518 "Ancho" => 2328 "Tamanyo" => 272754 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Changes in StO<span class="elsevierStyleInf">2</span> during the 3-min vascular occlusion test (VOT). Baseline StO<span class="elsevierStyleInf">2</span> levels show absolute StO<span class="elsevierStyleInf">2</span> values before and after VOT. Dynamic StO<span class="elsevierStyleInf">2</span> response is shown by the occlusion slope during ischaemia, the recovery slope during reperfusion, and the hyperaemic recovery area during hyperaemia.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1838 "Ancho" => 3063 "Tamanyo" => 317301 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Changes over time in heart rate (A), mean arterial pressure (B), systolic volume index (C), norepinephrine administration (D), temperature (E), and central venous saturation (F). Data are shown as median (interquartile range) during surgery and the nonparametric analysis of systemic changes over time in longitudinal data is shown as the corresponding <span class="elsevierStyleItalic">p</span> value.</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 2172 "Ancho" => 2282 "Tamanyo" => 249991 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Variables calculated during the four time points of the repeated vascular occlusion test (VOT): mean baseline pre-VOT StO<span class="elsevierStyleInf">2</span> (A), StO<span class="elsevierStyleInf">2</span> saturation slope during ischaemia (B), StO<span class="elsevierStyleInf">2</span> recovery slope during reperfusion (C), and the hyperaemic recovery area during hyperaemia (D). Data are shown as median (interquartile range) during surgery and the nonparametric analysis of systemic changes over time in longitudinal data is shown as the corresponding <span class="elsevierStyleItalic">p</span> value.</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1545 "Ancho" => 2434 "Tamanyo" => 356899 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Forrest plot showing the correlation between the intraoperative changes over time in saturation and recovery slopes and intraoperative variables, showing the odds ratio obtained by GEE. The odds ratio with a 95% confidence interval (95% CI) was plotted on a logarithmic scale and adjusted for the remaining variables. The odds ratios of norepinephrine, heart rate, and temperature were stepped (s.c.) at intervals of 0.01<span class="elsevierStyleHsp" style=""></span>μg<span class="elsevierStyleHsp" style=""></span>kg<span class="elsevierStyleSup">−1</span><span class="elsevierStyleHsp" style=""></span>min<span class="elsevierStyleSup">−1</span>, 5<span class="elsevierStyleHsp" style=""></span>bpm and 0.1<span class="elsevierStyleHsp" style=""></span>°C, respectively.</p>" ] ] 4 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Data are shown as median (interquartile range) or as number of patients (%).</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Variable \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Study population(n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>30) \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Age (years)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">58.0 (46.0; 65.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Body mass index (kg/m</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">2</span></span><span class="elsevierStyleItalic">)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">25.2 (22.8; 28.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleItalic">American Society of Anaesthesiology (ASA)</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>ASA Physical Status I, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4 (13.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>ASA Physical Status II, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">14 (46.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>ASA Physical Status III, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">12 (40.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Pre-existing arterial hypertension</span>, n <span class="elsevierStyleItalic">(%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">9 (30) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleItalic">Chronic medications</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Beta blocker, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">7 (23.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Angiotensin converting enzyme inhibitors, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">6 (20.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Angiotensin type 1 receptor antagonists, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 (3.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Statins, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4 (13.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Diuretics, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">3 (10.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Other medications, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">6 (20.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Preoperative fluid deprivation (min)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">660 (330; 870) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Preoperative fasting (min)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1260 (1009; 1451) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Patients with ascites</span>, n <span class="elsevierStyleItalic">(%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">18 (60.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleItalic">FIGO classification</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Stage 1, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4 (13.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Stage 2, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 (3.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Stage 3a, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">3 (10.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Stage 3b, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">6 (20.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Stage 3c, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">10 (33.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleItalic">Type of surgery</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Hysterectomy, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">21 (70.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Adnectomy, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">25 (83.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Omentectomy, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">27 (90) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Pelvic lymph node dissection, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">20 (66.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Para-aortic lymph node dissection, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">22 (73.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Large bowel resection, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">14 (46.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Small bowel resection, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">5 (16.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Peritonectomy, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">26 (86.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Appendectomy, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">10 (33.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Splenectomy, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">5 (16.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Partial diaphragmatic resection, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4 (13.4) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1001896.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Demographic characteristics and tumour staging of study patients.</p>" ] ] 5 => array:7 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">Data are shown as median (interquartile range) or number of patients (%).</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Variable \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Study population(n<span class="elsevierStyleHsp" style=""></span>=<span class="elsevierStyleHsp" style=""></span>30) \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Duration of surgery (h:m)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">4:24 (3:45; 5:48) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Randomized to balanced crystalloid group (vs balanced colloid), n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">15 (50) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleItalic">Physiologic and operative severity score for the enumeration of mortality and morbidity (POSSUM)</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>POSSUM physiological scale (score) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">15.0 (13.0; 18.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>POSSUM operative scale (score) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">32.0 (30.8; 37.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>Total POSSUM scale (score) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">48.0 (44.5; 51.5) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>POSSUM prediction of morbidity (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">93.7 (89.7; 96.8) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>POSSUM prediction of mortality (%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">19.5 (12.2; 30.5) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Total intravenous anaesthesia, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">18 (60.0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Preoperative antibiotic prophylaxis, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">29 (96.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Active warming system, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">30 (100) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Balanced crystalloid infusion (ml)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">2550 (1000; 4525) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Balanced colloid infusion (ml)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1800 (0; 3525) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Patients with intraoperative transfusion of red packed cells, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">19 (63.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Red packed cells transfused intraoperatively (ml)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">490 (0; 1040) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">PRBC transfused intraoperatively, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">26 (86.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Cumulative dose of norepinephrine (μg)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1304 (747; 2197) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Maximum dose of norepinephrine (μg</span><span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">kg</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">−1</span></span><span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">min</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">−1</span></span><span class="elsevierStyleItalic">)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0.16 (0.09; 0.25) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Need for inotropic drugs, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 (3.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Estimated intraoperative blood loss (ml)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1025 (600; 2538) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Total urine output (ml</span><span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">kg</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">−1</span></span><span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">h</span><span class="elsevierStyleSup"><span class="elsevierStyleItalic">−1</span></span><span class="elsevierStyleItalic">)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.69 (0.62; 2.25) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Hospital stay (LOS) (day/h)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">14/11 (11/17; 17/06) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Length of stay in postanaesthesia care unit or critical care unit (day/h)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">01:15 (00:15; 02:22) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Need for postoperative mechanical ventilation, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">8 (26.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " colspan="2" align="left" valign="top"><span class="elsevierStyleItalic">Sequential Organ Failure Assessment (SOFA) score</span></td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>SOFA score immediately after surgery \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.0 (0; 4.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>SOFA score at 6<span class="elsevierStyleHsp" style=""></span>h post-surgery \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.0 (0; 3.5) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleHsp" style=""></span>SOFA score at 1 day post-surgery \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1.0 (0.8; 3.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Total number of complications per patient according to Clavien classification (n)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">3 (1; 4) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Number of patients with complications according to Clavien classification, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">26 (86.7) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">Intrahospital mortality, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">0 (0) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="table-entry ; entry_with_role_rowhead " align="left" valign="top"><span class="elsevierStyleItalic">3-Month mortality, n (%)</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="char" valign="top">1 (3.3) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab1001897.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Intraoperative and postoperative characteristics of study patients.</p>" ] ] 6 => array:5 [ "identificador" => "upi0005" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "Ecomponente" => array:2 [ "fichero" => "mmc1.pdf" "ficheroTamanyo" => 836258 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:22 [ 0 => array:3 [ "identificador" => "bib0115" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "N.N. Rahbari" 1 => "J.B. Zimmermann" 2 => "T. Schmidt" 3 => "M. Koch" 4 => "M.A. Weigand" 5 => "J. Weitz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/bjs.6552" "Revista" => array:6 [ "tituloSerie" => "Br J Surg" "fecha" => "2009" "volumen" => "96" "paginaInicial" => "331" "paginaFinal" => "341" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19283742" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0120" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mortality after surgery in Europe: a 7 day cohort study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "R.M. Pearse" 1 => "R.P. Moreno" 2 => "P. Bauer" 3 => "P. Pelosi" 4 => "P. Metnitz" 5 => "C. Spies" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(12)61148-9" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2012" "volumen" => "380" "paginaInicial" => "1059" "paginaFinal" => "1065" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22998715" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0125" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Balanced crystalloid compared with balanced colloid solution using a goal-directed haemodynamic algorithm" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Feldheiser" 1 => "V. Pavlova" 2 => "T. Bonomo" 3 => "A. Jones" 4 => "C. Fotopoulou" 5 => "J. Sehouli" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/bja/aes377" "Revista" => array:6 [ "tituloSerie" => "Br J Anaesth" "fecha" => "2013" "volumen" => "110" "paginaInicial" => "231" "paginaFinal" => "240" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23112214" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0130" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Monitoring the microcirculation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "D. De Backer" 1 => "K. Donadello" 2 => "D.O. Cortes" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10877-012-9383-8" "Revista" => array:6 [ "tituloSerie" => "J Clin Monit Comput" "fecha" => "2012" "volumen" => "26" "paginaInicial" => "361" "paginaFinal" => "366" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22833180" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0135" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mitochondrial function in sepsis: acute phase versus multiple organ failure" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M. Singer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/01.CCM.0000278049.48333.78" "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2007" "volumen" => "35" "paginaInicial" => "S441" "paginaFinal" => "S448" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17713391" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0140" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Skeletal muscle oxygen saturation (StO<span class="elsevierStyleInf">2</span>) measured by near-infrared spectroscopy in the critically ill patients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J. Mesquida" 1 => "G. Gruartmoner" 2 => "C. Espinal" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Biomed Res Int" "fecha" => "2013" "paginaInicial" => "502194" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0145" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The prognostic value of muscle StO<span class="elsevierStyleInf">2</span> in septic patients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J. Creteur" 1 => "T. Carollo" 2 => "G. Soldati" 3 => "G. Buchele" 4 => "D. De Backer" 5 => "J.L. Vincent" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-007-0739-3" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2007" "volumen" => "33" "paginaInicial" => "1549" "paginaFinal" => "1556" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17572876" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0150" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Is thenar tissue hemoglobin oxygen saturation in septic shock related to macrohemodynamic variables and outcome?" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D. Payen" 1 => "C. Luengo" 2 => "L. Heyer" 3 => "M. Resche-Rigon" 4 => "S. Kerever" 5 => "C. Damoisel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/cc8004" "Revista" => array:5 [ "tituloSerie" => "Crit Care" "fecha" => "2009" "volumen" => "13" "paginaInicial" => "S6" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19951390" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0155" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prehospital dynamic tissue oxygen saturation response predicts in-hospital lifesaving interventions in trauma patients" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "F.X. Guyette" 1 => "H. Gomez" 2 => "B. Suffoletto" 3 => "J. Quintero" 4 => "J. Mesquida" 5 => "H.K. Kim" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/TA.0b013e31823d0677" "Revista" => array:6 [ "tituloSerie" => "J Trauma Acute Care Surg" "fecha" => "2012" "volumen" => "72" "paginaInicial" => "930" "paginaFinal" => "935" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22491607" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0160" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Intraoperative tissue oxygenation and postoperative outcomes after major non-cardiac surgery: an observational study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "B.B. Abdelmalak" 1 => "J.P. Cata" 2 => "A. Bonilla" 3 => "J. You" 4 => "T. Kopyeva" 5 => "J.D. Vogel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/bja/aes378" "Revista" => array:6 [ "tituloSerie" => "Br J Anaesth" "fecha" => "2013" "volumen" => "110" "paginaInicial" => "241" "paginaFinal" => "249" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23171726" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0165" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Association of intraoperative tissue oxygenation with suspected risk factors for tissue hypoxia" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R.J. Spruit" 1 => "L.A. Schwarte" 2 => "O.W. Hakenberg" 3 => "T.W. Scheeren" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10877-013-9460-7" "Revista" => array:6 [ "tituloSerie" => "J Clin Monit Comput" "fecha" => "2013" "volumen" => "27" "paginaInicial" => "541" "paginaFinal" => "550" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23564237" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0170" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Development and feasibility study of an algorithm for intraoperative goal-directed haemodynamic management in noncardiac surgery" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "A. Feldheiser" 1 => "P. Conroy" 2 => "T. Bonomo" 3 => "B. Cox" 4 => "T.R. Garces" 5 => "C. Spies" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Int Med Res" "fecha" => "2012" "volumen" => "40" "paginaInicial" => "1227" "paginaFinal" => "1241" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22971475" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0175" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microcirculatory perfusion during volume therapy. A comparative study using crystalloid or colloid in awake animals" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "W. Funk" 1 => "V. Baldinger" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Anesthesiology" "fecha" => "1995" "volumen" => "82" "paginaInicial" => "975" "paginaFinal" => "982" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/7717571" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0180" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of hydroxyethyl starch 130/0.4 on ischaemia/reperfusion in rabbit skeletal muscle" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "N. Inan" 1 => "S. Iltar" 2 => "H. Surer" 3 => "G. Yilmaz" 4 => "K.B. Alemdaroglu" 5 => "M.A. Yazar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/EJA.0b013e32831ac4a7" "Revista" => array:6 [ "tituloSerie" => "Eur J Anaesthesiol" "fecha" => "2009" "volumen" => "26" "paginaInicial" => "160" "paginaFinal" => "165" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19142092" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0185" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Goal-directed colloid administration improves the microcirculation of healthy and perianastomotic colon" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "O. Kimberger" 1 => "M. Arnberger" 2 => "S. Brandt" 3 => "J. Plock" 4 => "G.H. Sigurdsson" 5 => "A. Kurz" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/ALN.0b013e31819841f6" "Revista" => array:6 [ "tituloSerie" => "Anesthesiology" "fecha" => "2009" "volumen" => "110" "paginaInicial" => "496" "paginaFinal" => "504" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19225390" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0190" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Microcirculatory effects of intravenous fluids in critical illness: plasma expansion beyond crystalloids and colloids" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "N.R. Villela" 1 => "B.Y. Salazar Vazquez" 2 => "M. Intaglietta" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Clin Opin Anaesthesiol" "fecha" => "2009" "volumen" => "22" "paginaInicial" => "163" "paginaFinal" => "167" ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0195" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "J. Kondrup" 1 => "H.H. Rasmussen" 2 => "O. Hamberg" 3 => "Z. Stanga" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Clin Nutr" "fecha" => "2003" "volumen" => "22" "paginaInicial" => "321" "paginaFinal" => "336" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12765673" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673604161011" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0200" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Use of non-invasive NIRS during a vascular occlusion test to assess dynamic tissue O(2) saturation response" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "H. Gomez" 1 => "A. Torres" 2 => "P. Polanco" 3 => "H.K. Kim" 4 => "S. Zenker" 5 => "J.C. Puyana" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-008-1145-1" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2008" "volumen" => "34" "paginaInicial" => "1600" "paginaFinal" => "1607" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18523754" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0205" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prognostic implications of tissue oxygen saturation in human septic shock" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Mesquida" 1 => "C. Espinal" 2 => "G. Gruartmoner" 3 => "J. Masip" 4 => "C. Sabatier" 5 => "F. Baigorri" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-012-2491-6" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2012" "volumen" => "38" "paginaInicial" => "592" "paginaFinal" => "597" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22310873" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0210" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Changes in muscle tissue oxygenation during stagnant ischemia in septic patients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "R. Pareznik" 1 => "R. Knezevic" 2 => "G. Voga" 3 => "M. Podbregar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00134-005-2841-8" "Revista" => array:6 [ "tituloSerie" => "Intensive Care Med" "fecha" => "2006" "volumen" => "32" "paginaInicial" => "87" "paginaFinal" => "92" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16261341" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0215" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dynamic near-infrared spectroscopy measurements in patients with severe sepsis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "D.E. Skarda" 1 => "K.E. Mulier" 2 => "D.E. Myers" 3 => "J.H. Taylor" 4 => "G.J. Beilman" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/01.shk.0000239779.25775.e4" "Revista" => array:6 [ "tituloSerie" => "Shock" "fecha" => "2007" "volumen" => "27" "paginaInicial" => "348" "paginaFinal" => "353" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17414414" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0220" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "V.S. Edul" 1 => "C. Enrico" 2 => "B. Laviolle" 3 => "A.R. Vazquez" 4 => "C. Ince" 5 => "A. Dubin" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/CCM.0b013e31823dae59" "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2012" "volumen" => "40" "paginaInicial" => "1443" "paginaFinal" => "1448" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22430243" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack206153" "titulo" => "Acknowledgments" "texto" => "<p id="par0225" class="elsevierStylePara elsevierViewall">We would like to thank the researchers involved in the BalaCriCo study for their help with this study; also, Ansgar Jones, M.D., Holger Krebbel, M.D., Karin Weimann, M.D., Velizara Pavlova, M.D. and Olga Müller, M.D. for their help in recruiting patients for the study, and Mandy Koch, M.D., Jean-Philipp Zallet, M.D., Kathrin Solzbach, M.D., Alexander Giebels, M.D. and David Liehre, M.D. for their help with data acquisition.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/23411929/0000006300000003/v1_201603020056/S2341192915000864/v1_201603020056/en/main.assets" "Apartado" => array:4 [ "identificador" => "34051" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/23411929/0000006300000003/v1_201603020056/S2341192915000864/v1_201603020056/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2341192915000864?idApp=UINPBA00004N" ]
Journal Information
Share
Download PDF
More article options
Original article
Dynamic muscle O2 saturation response is impaired during major non-cardiac surgery despite goal-directed haemodynamic therapy
La respuesta de la saturación dinámica muscular en cirugía no cardiaca se altera pese a la terapia hemodinámica dirigida por objetivos
A. Feldheisera, O. Hunsickera, L. Kaufnera, J. Köhlera, H. Sieglitza, R. Casans Francésb, K.-D. Werneckec, J. Sehoulid, C. Spiesa,
Corresponding author
a Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-University Medicine Berlin, Berlin, Germany
b Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
c Charité-University Medicine Berlin and SOSTANA GmbH Berlin, Berlin, Germany
d Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité–Universitaetsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany