metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis El ácido acetilsalicílico incrementa la expresión de CD36 en macrófagos THP-...
Información de la revista
Vol. 16. Núm. 2.
Páginas 61-67 (enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 2.
Páginas 61-67 (enero 2004)
Acceso a texto completo
El ácido acetilsalicílico incrementa la expresión de CD36 en macrófagos THP-1 de forma independiente del receptor activado por proliferadores peroxisómicos gamma
Acetylsalicylic acid (ASA) increases cd36 levels in thp-1 macrophages independently of peroxisome proliferator activated receptor (PPAR-γ)
Visitas
3870
M. Viñals
Autor para correspondencia
mvinals@cgm.cnrs-gif.fr

Correspondencia: Dra. M. Viñals. Centre de Genetique Moleculaire-Bat 26. CNRS Av. de la Terrasse. 91198 Gif-sur-Ivette. France. Correo electrónico:
, I. Bermúdez, J.C. Laguna
Unitat de Farmacologia. Facultat de Farmàcia. Universitat de Barcelona. Nucli Universitari de Pedralbes. Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Introducción

El CD36 es un receptor cuya expresión se incrementa en la diferenciación de monocitos a macrófagos; desempeña un papel clave en la formación de la célula espumosa, y su expresión se ve incrementada por ligandos de proliferadores peroxistómicos gamma (PPAR-γ. Recientemente se ha descrito que la activación de PPAR-γen macrófagos actúa paralelamente reduciendo la expresión de la enzima ciclooxigenasa e incrementando la expresión de CD36. El objetivo del presente trabajo ha sido determinar si la reducción en la producción endógena de prostaglandinas puede ser responsible de los cambios en la expresión de CD36.

Métodos

La expresión de CD36 se determinó por citometría de flujo en células THP-1 diferenciadas a macrófagos e incubadas en presencia o no de ácido acetilsalicílico (AAS), carbaprostaciclina (cPGI2, agonista PPAR-α/β), 15-deoxi-Δ12,14_ prostaglandina J2 (15-d-PGJ2, agonista PPAR-γ), prostaglandina E2 (PGE2) y antagonistas de PPAR-γ) (BADGE y diclofenaco). La viabilidad celular se determinó por el método MTT.

Resultados

El AAS indujo, de forma dependiente del tiempo y la concentración, la expresión de CD36. La PGE2 fue capaz de anular el efecto del AAS, mientras que la 15-d-PGJ2 potenció su efecto. El antagonista de PPAR-γ, BADGE, no modificó el efecto del AAS.

Conclusiones

Los resultados de este trabajo indican que AAS produce un incremento de CD36 a través de un mecanismo dependiente de PGE2 e independiente de PPAR-γ.

Palabras clave:
Ácido acetilsalicílico
CD36
Macrófagos
PPAR
Prostaglandinas
Background

CD36 is a receptor whose expression increases during monocyte differentiation to macrophages. It plays a key role in the formation of foam cells during atherosclerosis. Ligands of PPAR-γ have recently been reported to induce CD36 expression and to inhibit cyclooxygenase expression in macrophages. Our objective was to study whether reduction of endogenous prostaglandin production could modify CD36 expression in macrophages.

Methods

CD36 expression was measured by flow cytometry in thp1 cells differentiated to macrophages that had been incubated with acetylsalicylic acid (ASA) alone or in combination with carbaprostacyclin (cPGI2, a PPAR-α/β agonist), 15-deoxy-Δ12,14-prostaglandin J2 (15-d PGJ2, a PPAR-γ agonist), prostaglandin E2 (PGE2), and PPAR-γ) antagonists (BADGE and diclofenac). Cell viability was assessed by the MTT method.

Results

ASA time- and dose-dependently induced CD36 expression. PGE2 completely abolished CD36 induction by ASA, while 15-d-PGJ2 potentiated the effect of ASA on CD36 expression. PPAR-γ antagonists did not modify the effect of ASA.

Conclusions

The results of this study show that ASA increases CD36 levels by a PGE2- dependent and a PPAR-γ-independent mechanism.

Key words:
Acetylsalicylic acid
CD36
Macrophages
PPAR
Prostaglandins
El Texto completo está disponible en PDF
Bibliografía
[1.]
R. Ross.
Atherosclerosis: an inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[2.]
H. Steller.
Mechanism and genes of cellular suicide.
Science, 267 (1995), pp. 1445-1449
[3.]
M. Febbraio, D.P. Hajjar, R.L. Silverstein.
Cd36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism.
J Clin Invest, 108 (2001), pp. 785-791
[4.]
E.A. Meade, T.M. McIntyre, G.A. Zimmerman, S.M. Prescott.
Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells.
J Biol Chem, 274 (1999), pp. 8328-8334
[5.]
S. Kersten, B. Desvergne, W. Wahli.
Roles of PPARs in health and disease.
Nature, 405 (2000), pp. 421-424
[6.]
D. Bishop-Bailey.
Peroxisome proliferator-activated receptors in the cardiovascular system.
Br J Pharmacol, 129 (2000), pp. 823-834
[7.]
P. Tontonoz, L. Nagy, J.G.A. Álvarez, V.A. Thomazy, R.M. Evans.
Ppar77promotes monocyte/macrophage differentiation and uptake of oxidizedoLDL.
Cell, 93 (1998), pp. 241-252
[8.]
J.J. Nolan, B. Ludvik, P. Beerdsen, M. Joyce, J. Olefsky.
Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone.
N Engl J Med, 331 (1994), pp. 1188-1193
[9.]
P. Tontonoz, S. Singer, B.M. Forman, P. Sarraf, J.A. Fletcher, C.D.M. Fletcher, et al.
Terminal differentiation of human liposarcoma cells induced by ligads for peroxisome proliferator-activated receptor gamma and the retinoid X receptor.
Proc Natl Acad Sci USA, 94 (1997), pp. 237-241
[10.]
E. Mueller, P. Sarraf, P. Tontonoz, R.M. Evans, K.J. Martin, M. Zhang, et al.
Terminal differentiation of human breast cancer through PPARgamma.
Mol Cell, 1 (1998), pp. 465-470
[11.]
D. Bishop-Bailey, T. Hla.
Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR)ligand 15-deoxy-Delta12, 14-prostaglandin J2.
J Biol Chem, 274 (1999), pp. 17042-17048
[12.]
T.H. Chang, E. Szabo.
Induction of differentiation and apoptosis by ligands of peroxisome proliferator-activated receptor gamma in nonsmall cell lung cancer.
Cancer Res, 60 (2000), pp. 1129-1138
[13.]
Y. Tsubouchi, H. Sano, Y. Kawahito, S. Mukai, R. Yamada, M. Kohno, et al.
Inhibition of human lung cancer cell growth by the peroxisome proliferator- activated receptor-gamma agonists through induction of apoptosis.
Biochem Biophys Res Commun, 270 (2000), pp. 400-405
[14.]
M. Ricote, A.C. Li, T.M. Willson, C.J. Kelly, C.K. Glass.
The peroxisome proliferator- activated receptor-gamma is a negative regulator of macrophage activation.
Nature, 391 (1998), pp. 79-82
[15.]
C.G. Su, X. Wen, S.T. Bailey, W. Jiang, S.M. Rangwala, S.A. Keilbaugh, et al.
A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response.
J Clin Invest, 104 (1999), pp. 389-393
[16.]
Y. Kawahito, M. Kondo, Y. Tsubouchi, A. Hashiramoto, D. Bishop-Bailey, K. Inoue, et al.
15-deoxy-delta(12, 14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats.
J Clin Invest, 106 (2000), pp. 189-197
[17.]
M. Vázquez-Carrera, J.C. Laguna.
Receptores activados por proliferadores peroxisómicos (PPAR) metabolismo energético y aterosclerosis.
Endocrinol Nutr, 47 (2000), pp. 301-310
[18.]
A.G. Gilman, T.W. Rall, A.S. Nies.
The pharmacological basis of therapeutic. 8th ed.
[19.]
Y.C. Liang, S.H. Tsai, D.C. Tsai, S.Y. Lin-Shiau, J.K. Lin.
Supression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-gamma by flavonoids in mouse macrophages.
Febs Lett, 496 (2001), pp. 12-18
[20.]
J.M. Lehmann, J.M. Lenhard, B.B. Oliver, G.M. Ringold, S.A. Kliewer.
Peroxisome proliferator-activated receptors ppand aaare activated by indomethacin and other non-steroidal anti-inflammatory drugs.
J Biol Chem, 272 (1997), pp. 3406-3410
[21.]
M. Viñals, J. Martínez-González, J.J. Badimón, L. Badimón.
HDL induced prostacyclin release in smooth muscle cells is dependent on cyclooxygenase- 2 mRNA (Cox-2.
Arterioscler Thromb Vasc Biol, 17 (1997), pp. 3481-3488
[22.]
M.M. Bradford.
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem, 72 (1976), pp. 248-254
[23.]
J. Auwerx.
The human leukemia cell line, THP-1: a multifaceted model for the study of monocyte-macrophage differentiation.
Experentia, 47 (1991), pp. 22-31
[24.]
G. Llaverías, M. Jové, M. Vázquez-Carrera, R.M. Sánchez, C. Díaz, G. Hernández, et al.
Avasimibe and atorvastatin synergistically reduce cholesteryl ester content in THP-1 macrophages.
Eur J Pharmacol, 45 (2002), pp. 11-17
[25.]
M. Viñals, S. Xu, E. Vasile, M. Krieger.
Identification of the N-linked glycosylation sites on the high density lipoprotein (HDL) receptor SR-BI and assessment of their effects on HDL binding and selective lipid uptake.
J Biol Chem, 278 (2003), pp. 5325-5332
[26.]
S. Shade, Y. Bezugla, A. Kolada, S. Kamionka, R. Scheibe, P. Dieter.
Diverse functional coupling of cyclooxygenase 1 and 2 with final prostanoid synthases in liver macrophages.
Biochem Pharmacol, 64 (2002), pp. 1227-1232
[27.]
D.J.A. Adamson, D. Frew, R. Tatoud.
Diclofenac antagonizes peroxisome proliferator-activated receptor gamma signaling.
Mol Pharmacol, 61 (2002), pp. 7-12
[28.]
D. Bishop-Bailey, T. Hla, T.D. Warner.
Bisphenol A diglycidyl ether (BADGE) is a PPARiiagonist in an ECV304 cell line.
Br J Pharmacol, 131 (2000), pp. 651-654
[29.]
L. Buja, T. Kita, J.L. Goldstein, Y. Watanabe, M.S. Brown.
Cellular pathology of progressive atherosclerosis in the WHHL rabbit. An animal model of familial hypercholesterolemia.
Arteriosclerosis, 3 (1983), pp. 87-101
[30.]
V.V. Kunjathoor, M. Febbraio, E.A. Podrez, K.J. Moore, L. Andersson, S. Koehn, et al.
Scavenger class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages.
J Biol Chem, 277 (2002), pp. 49982-49988
[31.]
J.L. Masferrer, P. Needleman.
Antiinflammatories for cardiovascular disease.
Proc Natl Acad Sci USA, 97 (2000), pp. 12400-12401
[32.]
S. Zuckerman, C. Panousis, G. Evans.
TGF-beta reduced binding of highdensity lipoproteins in murine macrophages and macrophage-derived foam cells.
Atherosclerosis, 155 (2001), pp. 79-85
[33.]
S. Han, N. Sidell.
Peroxisome-proliferator-activated-receptor gamma (PPARgamma) independent induction of CD36 in THP-1 monocytes by retinoic acid.
Immunology, 106 (2002), pp. 53-59
[34.]
J.H. Paik, J.H. Ju, J.Y. Lee, M.D. Boudreau, D.H. Hwang.
Two opposing effects of non-steroidal anti-inflammatory drugs on the expression of the inducible cyclooxygenase. Mediation through different signaling pathways.
J Biol Chem, 275 (2000), pp. 28173-28179
[35.]
H. Vosper, L. Patel, T.L. Graham, G.A. Khoudoli, A. Hill, C.H. Macphee, et al.
The peroxisome proliferator-activated receptor delta promotes lipid accumulation in human macrophages.
J Biol Chem, 276 (2001), pp. 44258-44265
[36.]
J.L. Masferrer, B.S. Zweifel, K. Seiber, P. Needleman.
Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice.
J Clin Invest, 86 (1990), pp. 1375-1379
[37.]
J.L. Masferrer, K. Seiber, B.S. Zweifel, P. Needleman.
Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme.
Proc Natl Acad Sci USA, 89 (1992), pp. 3917-39121
[38.]
R. Tazawa, X.M. Xu, K.K. Wu, L.H. Wang.
Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene.
Biochem Biophys Res Commun, 203 (1994), pp. 190-199
[39.]
E. Kopp, S. Ghosh.
Inhibition of NF-kappa B by sodium salicylate and aspirin.
Science, 265 (1994), pp. 956-959
[40.]
H.M. Wright, C.B. Clish, T. Mikami, S. Hauser, K. Yanagi, R. Hiramatsu, et al.
A synthetic antagonist for the peroxisome proliferators activated receptor gamma inhibits adipocyte differentiation.
J Biol Chem, 275 (2000), pp. 1873-1877
[41.]
J.Y. Fu, J.L. Masferrer, K. Seiber, A. Raz, P. Needleman.
The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes.
J Biol Chem 1990, (1990), pp. 16737-16740
[42.]
F. Cipollone, C. Prontera, B. Pini, M. Marini, M. Fazia, D. De Cesare, et al.
Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability.
Circulation, 104 (2001), pp. 921-927
[43.]
T. Cyrus, S. Sung, L. Zhao, C.D. Funk, S. Tang, D. Pratico.
Effect of lowdose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice.
Circulation, 106 (2002), pp. 1282-1287
[44.]
M.L. Corcoran, W.G. Stetler-Stevenson, D.L. DeWitt, L.m. Nahl.
Effect of cholera toxin and pertussis toxin on prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinases production by human monocytes.
Arch Biochem Biophys, 310 (1994), pp. 481-488
[45.]
M. Febbraio, E.A. Podrez, J.D. Smith, D.P. Hajjar, S.L. Hazen, H.F. Hoff, et al.
Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice.
J. Clin Invest, 105 (2000), pp. 1049-1056
[46.]
A. Paul, L. Calleja, J. Camps, J. Osada, E. Vilella, N. Ferre, et al.
The continuous administration of aspirin attenuates atherosclerosis in apolipoprotein E-deficient mice.
Life Sciences, 68 (2000), pp. 457-465

MV disfrutó de un contrato de reincorporación de doctores de la Generalitat de Catalunya (RED).

Copyright © 2004. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos