metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Inhibidores de la acil coenzima A:colesterol aciltransferasa (ACAT): mecanismos ...
Información de la revista
Vol. 16. Núm. 6.
Páginas 250-261 (enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 6.
Páginas 250-261 (enero 2004)
Acceso a texto completo
Inhibidores de la acil coenzima A:colesterol aciltransferasa (ACAT): mecanismos y perspectivas terapéuticas
Visitas
26016
G. Llaverias
Autor para correspondencia
alegret@farmacia.far.ub.es

Correspondencia:Unidad de Farmacología y Farmacognosia. Facultad de Farmacia. Avda. Diagonal, 643. 08028 Barcelona. España.
, M. Alegret
Unidad de Farmacología y Farmacognosia. Departamento de Farmacología y Química Terapéutica. Facultad de Farmacia. Universidad de Barcelona. Barcelona. España.
Este artículo ha recibido
Información del artículo
El Texto completo está disponible en PDF
Bibliografía
[1.]
B.K. Singh, J.L. Mehta.
Management of dyslipidemia in the primary prevention of coronary heart disease.
Curr opin cardiol, 17 (2002), pp. 503-511
[2.]
Expert panel on detection evaluation, and treatment of high blood cholesterol in adults. executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III).
JAMA, 285 (2001), pp. 2486-2497
[3.]
D.J. Maron, S. Fazio, F.L. McRae.
Current perspectives on statins.
Circulation, 101 (2000), pp. 207-213
[4.]
T.A. Pearson, I. Laurora, H. Chu, S. Kafonek.
The lipid treatment assessement project (L-TAP): a multicenter survey to evaluate the percentages of dyslipidemic patients receiving lipid-lowering therapy and achieving low-density lipoprotein cholesterol goals.
Arch intern med, 160 (2000), pp. 459-467
[5.]
R. Ross.
The pathogenesis of atherosclerosis: an update.
N engl j med, 314 (1986), pp. 488-500
[6.]
D.R. Sliskovic, A.D. White.
Therapeutic potential of ACAT inhibitors as lipid lowering and anti-atherosclerotic agents.
Trends in pharmacological sciences, 12 (1991), pp. 194-199
[7.]
E. Buckert.
New advances in lipid-modifying therapies for reducing cardiovascular risk.
Cardiology, 97 (2002), pp. 59
[8.]
R. Doshi, J. Wu, R. Fishelevich, A. Rodríguez.
Update on the role of acyl-coa:cholesterol acyltransferase inhibitors in atherosclerosis.
Expert opin ther patents, 11 (2001), pp. 1655-1662
[9.]
J.R. Burnett, L.J. Wilcox, M.W. Huff.
Acyl coenzyme a:cholesterol acyltransferase inhibition and hepatic apolipoprotein b secretion.
Clin chim acta, 286 (1999), pp. 231-242
[10.]
S.O. Olofsson, L. Asp, J. Bóren.
The assembly and secretion of apolipoprotein b-containing lipoproteins.
Curr opin lipidol, 10 (1999), pp. 341-346
[11.]
M.D. Wilson, L.L. Rudel.
Review of cholesterol absorption with emphasis on dietary and biliary cholesterol.
J lipid res, 35 (1994), pp. 943-955
[12.]
M.E. Pape, P.A. Schultz, T.J. Rea, R.B. DeMattos, K. Kieft, C.L. Bisgaier, et al.
Tissue specific changes in acyl-coa: cholesterol acyltransferase (ACAT) mRNA levels in rabbits.
J lipid res, 36 (1995), pp. 823-838
[13.]
G.M. Doolittle, T.Y. Chang.
Acyl-coa:cholesterol acyltransferase in chinese hamster ovary cells.enzyme activity determined after reconstitution in phospholipid/cholesterol liposomes.
Biochim biophys acta, 713 (1982), pp. 529-537
[14.]
M.S. Brown, S.E. Dana, J.L. Goldstein.
Cholesterol ester formation in cultured human fibroblasts. stimulation by oxygenated sterols.
J biol chem, 250 (1975), pp. 4025-4027
[15.]
J.L. Goldstein, S.E. Dana, M.S. Brown.
Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia.
Proc natl acad sci USA, (1974), pp. 4288-4292
[16.]
T.Y. Chang, G.M. Doolittle.
Acyl coenzyme a-cholesterol o-acyltransferase.
Enzymes, 16 (1983), pp. 523-539
[17.]
C.C. Chang, C.Y. Lee, E.T. Chang, J.C. Cruz, M.C. Levesque, T.Y. Chang.
Recombinant acyl-coa:cholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner.
J biol chem, 273 (1998), pp. 35132-35141
[18]
T.Y. Chang, C.C.Y. Chang, S. Lin, C. Yu, B.L. Li, A. Miyazaki.
Roles of acyl-coenzyme a:cholesterol acyltransferase-1 and -2.
Curr opin lipidol, 12 (2001), pp. 289-296
[19.]
C.C.Y. Chang, H.Y. Huh, K.M. Cadigan, T.Y. Chang.
Molecular cloning and functional expression of human acyl-coenzyme a:cholesterol acyltransferase cDNA in a mutant chinese hamster ovary cella.
J biol chem, 268 (1993), pp. 20747-20755
[20.]
V.L. Meiner, S. Cases, H.M. Myers, E.R. Sande, S. Bellosta, M. Schambelan, et al.
Disruption of the acyl-coa:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals.
Proc natl acad sci USA, 93 (1996), pp. 14041-14046
[21.]
R.A. Anderson, C. Joyce, M. Davis, J.W. Reagan, M. Clark, G.S. Shelness, et al.
Identification of a form of acyl-coa:cholesterol acyltransferase specific to liver and intestine in nonhuman primates.
J biol chem, 273 (1998), pp. 26747-26754
[22.]
S. Cases, S. Novak, Y.W. Zheng, H.M. Myers, S.R. Lear, E. Sande, et al.
ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization.
J Biol Chem, 273 (1998), pp. 26755-26764
[23.]
P. Oelkers, A. Behari, D. Cromley, J.T. Billheimer, S.L. Sturley.
Characterization of two human genes encoding acyl coenzyme a:cholesterol acyltransferase-related enzymes.
J biol chem, 273 (1998), pp. 26765-26771
[24.]
C.C. Chang, J. Chen, M.A. Thomas, D. Cheng, V.A. Del Priore, R.S. Newton, et al.
Regulation and immunolocalization of acyl-coenzyme a:cholesterol acyltransferase in mammalian cells as studied with specific antibodies.
J biol chem, 270 (1995), pp. 29532-29540
[25.]
S. Lin, D. Cheng, M.S. Liu, J. Chen, T.Y. Cang.
Human acyl-coa:cholesterol acyltransferase-1 in the endoplasmic reticulum contains seven transmembrame domains.
J biol chem, 274 (1999), pp. 23276-23285
[26.]
C.W. Joyce, G.S. Shelness, M.A. Davis, R.G. Lee, K. Skinner, R.A. Anderson, et al.
ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane.
Mol biol cell, 11 (2000), pp. 3675-3687
[27.]
K.F. Buhman, M. Accad, R.V.Jr. Farese.
Mammalian acyl-coa:cholesterol acyltransferases.
Biochim biophys acta, 1529 (2000), pp. 142-154
[28.]
N. Sakashita, O. Lee, K. Takahashi, S. Horiuchi, H. Hakamata, et al.
Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages.
Arterioscler thromb vasc biol, 18 (1998), pp. 1568-1574
[29.]
C.C. Chang, N. Sakashita, K. Ornvold, O. Lee, E.T. Chang, R. Dong, et al.
Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine.
J biol chem, 275 (2000), pp. 28083-28092
[30.]
R.G. Lee, M.C. Willingham, M.A. Davis, K.A. Skinner, L.L. Rudel.
Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates.
J lipid res, 41 (2000), pp. 1991-2001
[31]
K. Matsuda.
ACAT inhibitors as antiatherosclerotic agents: compounds and mechanisms.
Med res rev, 14 (1994), pp. 271-305
[32.]
T.M. Heinonen.
Acyl coenzyme a:cholesterol acyltransferase inhibition: potential atherosclerosis therapy or springboard for other discoveries?.
Expert opin invest drugs, 11 (2002), pp. 1519-1527
[33.]
H. Yagyu, T. Kitamine, J. Osuga, R. Tozawa, Z. Chen, Y. Kaji, et al.
Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia.
J biol chem, 275 (2000), pp. 21324-21330
[34.]
M. Accad, S.J. Smith, D.L. Newland, D.A. Sanan, L.E.Jr. King, S. Fazio, et al.
Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl coa:cholesterol acyltransferase.
J clin invest, 105 (2000), pp. 711-719
[35.]
S. Fazio, A.S. Major, L.L. Swift, L.A. Gleaves, M. Accad, M.F. Linton, et al.
Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages.
J clin invest, 107 (2001), pp. 163-171
[36.]
K.K. Buhman, M. Accad, S. Novak, R.S. Choi, J.S. Wong, R.L. Hamilton, et al.
Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice.
Nat med, 6 (2000), pp. 1341-1347
[37.]
S. Perrey, C. Legendre, A. Matsuura, C. Guffroy, J. Binet, S. Ohbayashi, et al.
Preferential pharmacological inhibition of macrophage ACAT increases plaque formation in mouse and rabbit models of atherogenesis.
Atherosclerosis, 155 (2001), pp. 359-370
[38.]
B.D. Roth.
ACAT inhibitors: evolution from cholesterol-absorption inhibitors to antiatherosclerotic agents.
Drug discovery today, 3 (1998), pp. 19-25
[39.]
K. Natori, Y. Okazaki, T. Nakajima, T. Hirohashi, S. Aono.
Mechanism of the inhibition of cholesterol absorption by dl-melinamide: inhibition of cholesterol esterification.
Jpn j pharmacol, 42 (1986), pp. 517-523
[40.]
W. Rucker, G. Prop, A.M. Huther.
Antiatherosclerotic and antihyperlipidemic effects of octimibate sodium in rabbits.
Atherosclerosis, 69 (1988), pp. 155-160
[41.]
J.G. Heider, C.E. Pickens, L.A. Kelly.
Role of acyl coa:cholesterol acyltransferase in cholesterol absorption and its inhibition by 57- 118 in the rabbit.
J lipid res, 24 (1983), pp. 1127-1134
[42.]
A.C. Ross, K.J. Go, J.G. Heider, G.H. Rothblat.
Selective inhibition of acyl coenzyme A:cholesterol acyltransferase by compound 58-035.
J biol chem, 259 (1984), pp. 815-819
[43.]
V.G. DeVries, S.A. Schaffer, E.E. Largis, M.D. Dutia, C.H. Wang, J.D. Bloom, et al.
Potential antiatherosclerotic agents. 5. an acyl-coa:cholesterol o-acyltransferase inhibitor with hypocholesterolemic activity.
J med chem, 29 (1986), pp. 1131-1133
[44.]
W.S. Harris, C.A. Dujovne, K. Von Bergmann, J. Neal, J. Akester, S.L. Windsor, et al.
Effects of the ACAT inhibitor cl 277,082 on cholesterol metabolism in humans.
Clin pharmacol ther, 48 (1990), pp. 189-194
[45.]
J.W. Hainer, J.G. Terry, J.M. Connell, H. Zyruk, R.M. Jenkins, D.L. Shand, et al.
Effect of the acyl-coa: cholesterol acyltransferase inhibitor dup 128 on cholesterol absorption and serum cholesterol in humans.
Clin pharmacol ther, 56 (1994), pp. 65-74
[46.]
T.M. Bocan, S.B. Mueller, P.D. Uhlendorf, R.S. Newton, B.R. Krause.
Comparison of CI-976, an ACAT inhibitor, and selected lipid-lowering agents for antiatherosclerotic activity in iliac-femoral and thoracic aortic lesions. A biochemical, morphological, and morphometric evaluation.
Arterioscler thromb, 11 (1991), pp. 1830-1843
[47.]
L.A. Vernetti, J.R. MacDonald, G.H. Wolfgang, M.A. Dominick, D.G. Pegg.
ATP depletion is associated with cytotoxicity of a novel lipid regulator in guinea pig adrenocortical cells.
Toxicol appl pharmacol, 118 (1993), pp. 30-38
[48.]
M. Matsuo, M. Hashimoto, J. Suzuki, K. Iwanami, M. Tomoi, K. Shimomura.
Difference between normal and WHHL rabbits in susceptibility to the adrenal toxicity of an acyl-CoA:cholesterol acyltransferase inhibitor, FR145237.
Toxicol appl pharmacol, 140 (1996), pp. 387-392
[49.]
G.J. Warner, G. Stoudt, M. Bamberger, W.J. Johnson, G.H. Rothblat.
Cell toxicity induced by inhibition of acyl coenzyme a:cholesterol acyltransferase and accumulation of unesterified cholesterol.
J biol chem, 270 (1995), pp. 5772-5778
[50.]
H.T. Lee, D.R. Sliskovic, J.A. Picard, B.D. Roth, W. Wierenga, J.L. Hicks, et al.
Inhibitors of acyl-coa: cholesterol o-acyl transferase (acat) as hypocholesterolemic agents. ci-1011: an acyl sulfamate with unique cholesterol-lowering activity in animals fed noncholesterol- supplemented diets.
J med chem, 31 (1996), pp. 5031-5034
[51.]
G. Llaverias, J.C. Laguna, M. Alegret.
Pharmacology of the ACAT inhibitor avasimibe (CI-1011).
Cardiovasc drug rev, 21 (2003), pp. 33-50
[52.]
G. Llaverias, M. Jové, M. Vázquez-Carrera, R.M. Sánchez, C. Díaz, G. Hernández, et al.
Avasimibe and atorvastatin synergistically reduce cholesteryl ester content in THP-1 macrophages.
Eur j pharmacol, 451 (2002), pp. 11-17
[53.]
A. Rodríguez, D.C. Usher.
Anti-atherogenic effects of the acyl-coa:cholesterol acyltransferase inhibitor, avasimibe (CI-1011), in cultured primary human macrophages.
Atherosclerosis, 161 (2002), pp. 45-54
[54.]
Y. Azuma, T. Kawasaki, K. Ikemoto, K. Ohno, T. Yamada, M. Yamasaki, et al.
Effects of NTE-122, a novel acyl-coa:cholesterol acyltransferase inhibitor, on cholesterol esterification and high-density lipoprotein-induced cholesterol efflux in macrophages.
Jpn j pharmacol, 79 (1999), pp. 159-167
[55.]
H. Hakamata, A. Miyazaki, M. Sakai, Y.I. Sakamoto, H. Matsuda, K. Kihara, et al.
Differential effects of an acyl-coenzyme a:cholesterol acyltransferase inhibitor on hdl-induced cholesterol efflux from rat macrophage foam cells.
FEBS lett, 363 (1995), pp. 29-32
[56.]
D.J. Delsing, E.H. Offerman, W. Van Duyvenvoorde, H. Van Der Boom, E.C. De Wit, M.J. Gijbels, et al.
Acyl-coa:cholesterol acyltransferase inhibitor avasimibe reduces atherosclerosis in addition to its cholesterol-lowering effect in apoe*3-leiden mice.
Circulation, 103 (2001), pp. 1778-1786
[57.]
G. Kellner-Weibel, W.G. Jerome, D.M. Small, G.J. Warner, J.K. Stoltenborg, M.A. Kearney, et al.
Effects of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death.
Arterioscler thromb vasc biol, 18 (1998), pp. 423-431
[58.]
Y Azuma, T. Kawasaki, K. Ohno, J. Seto, T. Yamada, M. Yamasaki, et al.
Effects of NTE-122, a novel acyl-CoA:cholesterol acyltransferase inhibitor, on cholesterol esterification and secretions of apoli- poprotein B-containing lipoprotein and bile acids in HepG2.
Jpn J Pharmacol, 79 (1999), pp. 151-158
[59]
F. Benoist, T. Grand-Perret.
Apob-100 secretion by hepg2 cells is regulated by the rate of triglyceride biosynthesis but not by intracellular lipid pools.
Arterioscler thromb vasc biol, 16 (1996), pp. 1229-1235
[60]
K.M. Cianflone, Z. Yasruel, M.A. Rodríguez, D. Vas, A.D. Sniderman.
Regulation of Apo B secretion from HepG2 cells: evidence for a critical role for cholesteryl ester synthesis in the response to a fatty acid challenge.
J Lipid Res, 31 (1990), pp. 2045-2055
[61]
R. Musanti, L. Giorgini, P.P. Lovisolo, A. Pirillo, A. Chiari, G. Ghiselli.
Inhibition of acyl-CoA:cholesterol acyltransferase decreases apolipoprotein B-100 containing lipoprotein secretion from HepG2 cells.
J Lipid Res, 37 (1996), pp. 1-14
[62.]
C. Ooyen, A. Zecca, T. Zanelli, A.L. Catapano.
Decreased intracellular degradation and increased secretion of Apo B-100 in Hep G2 cells after inhibition of cholesteryl ester synthesis.
Atherosclerosis, 130 (1997), pp. 143-152
[63.]
R.K. Avramoglu, K. Cianflone, A.D. Sniderman.
Role of the neutral lipid accessible pool in the regulation of secretion of Apo B-100 lipoprotein particles by HepG2 cells..
J Lipid Res, 36 (1995), pp. 2513-2528
[64.]
L.J. Wilcox, P.H.R. Barret, R.S. Newton, M. Huff.
Apo B-100 secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011. An effect associated with enhanced intracellular degradation of apoB.
Arterioscler thromb vasc biol, 19 (1999), pp. 939-949
[65.]
J.R. Burnett, L.J. Wilcox, D.E. Telford, S.J. Kleinstiver, P.H. Barrett, R.S. Newton, et al.
Inhibition of ACAT by avasimibe decreases both VLDL and LDL apolipoprotein B production in miniature pigs.
J Lipid Res, 40 (1999), pp. 1317-1327
[66.]
S.M. Post, J.P. Zoeteweij, M.H. Bos, E.C. de Wit, R. Havinga, F. Kuipers, et al.
Acyl-Coenzyme A:cholesterol acyltransferase inhibitor, avasimibe, stimulates bile acid synthesis and cholesterol 7-hydroxylase in cultured rat hepatocytes and in vivo in the rat.
Hepatology, 30 (1999), pp. 491-550
[67.]
V.Q. Hoang, K.M. Botham, G.M. Benson, E.E. Eldredge, B. Jackson, N. Pearce, et al.
Bile acid synthesis in hamster hepatocytes in primary culture: sources of cholesterol and comparison with other species.
Biochim Biophys Acta, 1210 (1993), pp. 73-80
[68.]
S. Murakami, I. Yamagishi, M. Sato, K. Tomisawa, Y Nara, Y. Yamori.
ACAT inhibitor HL-004 accelerates the regression of hypercholesterolemia in stroke-prone spontaneously hypertensive rats (SHRSP): stimulation of bile acid production by HL-004.
Atherosclerosis, 133 (1997), pp. 97-104
[69.]
W.J. Sampson, R.A. Suffolk, P. Bowers, J.D. Houghton, K.M. Botham, K.E. Suckling.
The role of acyl-CoA: cholesterol acyltransferase in the metabolism of free cholesterol to cholesteryl esters or bile acids in primary cultures of rat hepatocytes.
Biochim Biophys Acta, 920 (1987), pp. 1-8
[70.]
R.J. Nicolosi, T.A. Wilson, B.R. Krause.
The ACAT inhibitor, CI-1011 is effective in the prevention and regression of aortic fatty streak area in hamsters.
Atherosclerosis, 137 (1998), pp. 77-85
[71.]
R. Ramharack, M.A. Spahr, C.S. Sekerke, R.L. Stanfield, R.F. Bousley, H.T. Lee, et al.
CI-1011 lowers lipoprotein(a) and plasma cholesterol concentrations in chow-fed cynomolgus monkeys.
Atherosclerosis, 136 (1998), pp. 79-87
[72.]
K. Aragane, K. Fujinami, K Kojima, J. Kusunoki.
ACAT inhibitor F-1394 prevents intimal hyperplasia induced by balloon injury in rabbits.
J Lipid Res, 42 (2001), pp. 448
[73.]
Y. Asami, I. Yamagishi, K. Akiyoshi, H. Tomoike, K. Tsuchida, S. Higuchi.
Inhibitory effect of TS-962 on the formation of early atherosclerotic lesions in high fat-fed hyperlipidemic hamsters.
Atherosclerosis, 146 (1999), pp. 237-242
[74.]
Y. Azuma, K. Date, K. Ohno, S. Matsushiro, Y. Nobuhara, T. Yamada.
NTE-122, an acyl-coA:cholesterol acyltransferase inhibitor, prevents the progression of atherogenesis in cholesterol-fed rabbits.
Jpn J Pharmacol, 86 (2001), pp. 120-123
[75.]
T.M. Bocan, S.B. Mueller, P.D. Uhlendorf, E.Q. Brown, M.J. Mazur, A.E. Black.
Inhibition of acyl-CoA cholesterol O-acyltransferase reduces the cholesteryl ester enrichment of atherosclerotic lesions in the Yucatan micropig.
Atherosclerosis, 99 (1993), pp. 175-186
[76.]
T.M. Bocan, S.B. Mueller, E.Q. Brown, P. Lee, M.J. Bocan, T. Rea, et al.
HMG-CoA reductase and ACAT inhibitors act synergistically to lower plasma cholesterol and limit atherosclerotic lesion development in the cholesterol-fed rabbit.
Atherosclerosis, 139 (1998), pp. 21-30
[77.]
T.M. Bocan, B.R. Krause, W.S. Rosebury, S.B. Mueller, X. Lu, C. Dagle, et al.
The ACAT inhibitor avasimibe reduces macrophages and matrix metalloproteinase expression in atherosclerotic lesions of hypercholesterolemic rabbits.
Arterioscler thromb vasc biol, 20 (2000), pp. 70-79
[78.]
T.M. Bocan, B.R. Krause, W.S. Rosebury, X. Lu, C. Dagle, M.S. Bak, et al.
The combined effect of inhibiting both ACAT and HMG-CoA reductase may directly induce atherosclerotic lesion regression.
Atherosclerosis, 157 (2001), pp. 97-105
[79.]
J. Kusunoki, D.K. Hansoty, K. Aragane, J.T. Fallon, J.J. Badimon, E.A. Fisher.
Acyl-coa:cholesterol acyltransferase inhibition reduces atherosclerosis in apolipoprotein e-deficient mice.
Circulation, 103 (2001), pp. 2604-2609
[80.]
M. Matsuo, F. Ito, A. Konto, M. Aketa, M. Tomoi, K. Shimomura.
Effect of FR145237, a novel ACAT inhibitor, on atherogenesis in cholesterol-fed and WHHL rabbits. Evidence for a direct effect on the arterial wall.
Biochim biophys acta, 1259 (1995), pp. 254-260
[81.]
Y. Nagata, M. Yonemoto, Y. Iwasawa, A. Shimizu-Nagumo, H. Hattori, Y. Sawazaki, et al.
N-[2-[n’-pentyl-(6,6-dimethyl-2,4-heptadiynyl) amino]ethyl]-(2-methyl-1-naphthylthio)acetamide (fy-087). a new acyl coenzyme a:cholesterol acyltransferase (acat) inhibitor of diet-induced atherosclerosis formation in mice.
Biochem pharmacol, 49 (1995), pp. 643-651
[82.]
S. Kurz, A.B. Borthayre, D.G. Harrison.
The effect of ACAT inhibition with avasimibe on vascular function in hypercholesterolemia.
[83.]
D. Junquero, F. Bruniquel, X. N’Guyen, J.M. Autin, J.F. Patoiseau, A.D. Degryse, et al.
F 12511, a novel ACAT inhibitor, and atorvastatin regulate endogenous hypercholesterolemia in a synergistic manner in New Zealand rabbits fed a casein-enriched diet.
Atherosclerosis, 155 (2001), pp. 131-142
[84.]
W.Jr. Insull, M. Koren, J. Davignon, D. Sprecher, H. Schrott, L.M. Keilson, et al.
Efficacy and short-term safety of a new acat inhibitor, avasimibe, on lipids, lipoproteins, and apolipoproteins, in patients with combined hyperlipidemia.
Atherosclerosis, 157 (2001), pp. 137-144
[85.]
J.C. Tardif, J. Gregoire, J. Lesperance, J. Lambert, P.L. L’Allier, J. Rodes.
Design features of the avasimibe and progression of coronary lesions assessed by intravascular ultrasound (a-plus) clinical trial.
Am Heart J, 144 (2002), pp. 589-596
[86.]
F.J. Raal, A.D. Marais, E. Klepack, J. Lovalvo, R. McLain, T. Heinonen.
Avasimibe, an ACAT inhibitor, enhances the lipid lowering effect of atorvastatin in subjects with homozygous familial hypercholesterolemia.
Atherosclerosis, 171 (2003), pp. 273-279
[87.]
J.C. Tardif, J. Gregoire, P.L. L'Allier, T.J. Anderson, O. Bertrand, J. Rodes, et al.
Effects of the acyl coenzyme a:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions.
Circulation [publicado online] 8 de noviembre de, (2004),
Copyright © 2004. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos