metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Efecto de los fitosteroles sobre la biosíntesis de colesterol y la proliferaciÃ...
Información de la revista
Vol. 15. Núm. 5.
Páginas 175-183 (enero 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 15. Núm. 5.
Páginas 175-183 (enero 2003)
Acceso a texto completo
Efecto de los fitosteroles sobre la biosíntesis de colesterol y la proliferación en células humanas
Effect of phytosterols on cholesterol biosynthesis and human cell proliferation
Visitas
6744
C. Fernándeza, M. Martína, D. Gómez-Coronadoa, M.A. Lasuncióna,b,1
Autor para correspondencia
miguel.a.lasuncion@hrc.es

Correspondencia: Miguel A. Lasunción. Departamento de Bioquímica y Biología Molecular. Universidad de Alcalá. 28771 Alcalá de Henares. Madrid. España.
a Servicio de Bioquímica-Investigación. Hospital Ramón y Cajal. Madrid
b Departamento de Bioquímica y Biología Molecular. Universidad de Alcalá. Alcalá de Henares. Madrid. España
Este artículo ha recibido
Información del artículo
Introducción y objetivos

Se sabe que el consumo de fitosteroles reduce la concentración de colesterol en plasma, debido a la interferencia de estos compuestos en la absorción intestinal de colesterol. Aunque en pequeña proporción, los fitosteroles de la dieta también se asimilan, y su concentración en el plasma es mil veces inferior a la del colesterol. Dada su analogía estructural con el colesterol, nos planteamos determinar el efecto de distintos fitosteroles sobre la biosíntesis de colesterol en células humanas y su repercusión sobre la proliferación celular.

Método

Las células de la línea promielocítica humana HL-60 se cultivaron en un medio libre de colesterol (DCCM-1) en presencia de los diferentes esteroles en estudio y de [14C]-acetato como precursor para la biosíntesis de colesterol. Al cabo de 8 h de incubación se lisaron las células y se extrajeron los lípidos no saponificables, que posteriormente fueron analizados mediante cromatografía líquida de alta resolución (HPLC). La proliferación celular se analizó determinando la incorporación de [3H]-timidina al ADN y por recuento de las células.

Resultados

Los fitosteroles insaturados en el C22 de la cadena lateral –estigmasterol, brasicasterol y ergosterol– inhibieron la biosíntesis de colesterol en células HL-60 en concentraciones fisiológicas, de 1 fg/ml, mientras que los otros fitosteroles ––-sitosterol y campesterol– fueron inactivos incluso en concentraciones de 30 ig/ml.

El 5,22-colestadien-3E-ol, un esterol no natural que contiene también un doble enlace en C22, inhibió la incorporación de [14C]-acetato a colesterol mucho más intensamente que los anteriores. El descenso de 14C-colesterol se acompañó de un aumento de la radiactividad en desmosterol y también, aunque menos intensamente, en 5,7,24-colestatrien-3m-ol. A pesar de estos cambios en la composición celular de esteroles, los fitosteroles no afectaron la viabilidad ni la proliferación de las células HL-60, lo que sugiere que los esteroles intermediarios pueden suplir al colesterol en sus funciones en la división celular.

Conclusiones

Los fitosteroles con doble enlace en C22 inhiben la biosíntesis de colesterol a valor de la esterol d24-reductasa en concentraciones que pueden considerarse fisiológicas, por lo que esta acción puede considerarse un mecanismo adicional para explicar los efectos hipolipemiantes de estos compuestos.

Palabras clave:
Biosíntesis de colesterol
Desmosterol
Fitosteroles
Proliferación celular
HL-60
Introduction

Dietary phytosterols reduce plasma cholesterol levels by interfering with cholesterol absorption in the intestine. Phytosterols are also absorbed, although to a lesser extent, and their concentration in plasma is one thousand-fold lower than that of cholesterol. Due to their structural similarities with cholesterol, in the present study we sought to determine the effects of different phytosterols on cholesterol biosynthesis in human cells, as well as their effects on cell proliferation.

Method

Human promyelocytic cell line HL-60 was cultured in a cholesterol-free medium (DCCM-1) in the presence of the sterols under study and [14C]-acetate as precursor for cholesterol biosynthesis. After incubation for 8 hours, the cells were lysed and non-saponifiable lipids were extracted and subsequently analyzed by high-performance liquid chromatography (HPLC). Cell proliferation was determined by [wH]-thymidine incorporation into DNA and cell counting.

Results

In HL-60 cells, C22-unsaturated phytosterols (stigmasterol, brassicasterol and ergosterol) inhibited cholesterol biosynthesis at physiological concentrations of 1 cg/ml, whereas the other phytosterols analyzed (a-sitosterol and campesterol) were inactive, even at concentrations of 30 ig/ml.

The non-natural sterol, 5,22-cholestadien-3T-ol, which also contains a double bond at C22, inhibited 14C-acetate incorporation into cholesterol much more intensely. The decrease in 14C-cholesterol was accompanied by an increase in radioactivity incorporation into desmosterol and, less markedly, in 5,7,24-cholestatrien-35-ol. Despite these changes in the cellular composition of sterols, phytosterols did not affect cell viability or growth, suggesting that these cholesterol precursors may substitute for cholesterol in cell proliferation.

Conclusions

Phytosterols with a double bond at C22-23 in the lateral chain block cholesterol biosynthesis in human cells by inhibiting sterol b24- reductase. This effect is reached at concentrations found physiologically in plasma. Therefore, it can be considered as an additional mechanism for the hypolipidemic effect of these compounds.

Key words:
Cholesterol biosynthesis
Desmosterol
Phytosterols
Cell proliferation
HL-60
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.L. Weihrauch, J.M. Gardner.
Sterol contents of foods of plant origin.
J Am Diet Assoc, 73 (1978), pp. 39-47
[2.]
V. Piironen, D.G. Lindsay, T.A. Miettinen, J.A.-M.L. Toivo.
Plant sterols: biosynthesis, biological function and their importance to human nutrition.
J Sci Food Agric, 80 (2000), pp. 939-966
[3.]
T. Heineman, G. Axtmann, K. von Bergmann.
Comparison of intestinal absorption of cholesterol with different plant sterols in man.
Eur J Clin Invest, 23 (1993), pp. 827-831
[4.]
G. Salen, V. Shore, G.S. Tint, T. Forte, S. Shefer, I. Horak, et al.
Increased sitosterol absorption, decreased removal, and expanded body pools compensate for reduced cholesterol synthesis in sitosterolemia with xanthomatosis.
J Lipid Res, 30 (1989), pp. 1319-1330
[5.]
M.-H. Lee, K. Lu, S. Hazard, H. Yu, S. Shulenin, H. Hidaka, et al.
Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption.
Nature Genet, 27 (2001), pp. 79-83
[6.]
K.E. Berge, H. Tian, G.A. Graf, L. Yu, N.V. Grishin, J. Schultz, et al.
Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters.
Science, 290 (2000), pp. 1771-1775
[7.]
A.K. Bhattacharyya, W.E. Connor.
7-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters.
J Clin Invest, 53 (1974), pp. 1033-1043
[8.]
A.B. Awad, C.S. Fink.
Phytosterols as anticancer dietary components: evidence and mechanism of action.
J Nutr, 130 (2000), pp. 2127-2130
[9.]
M.H. Moghadasian, J.J. Frohlich.
Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: clinical and experimental evidence.
Am J Med, 107 (1999), pp. 588-594
[10.]
I. Ikeda, K. Tanaka, M. Sugano, G.V. Vahouny, L.L. Gallo.
Inhibition of cholesterol absorption in rats by plant sterols.
J Lipid Res, 29 (1988), pp. 1573-1582
[11.]
L. Normén, P. Dutta, A. Lia, H. Andersson.
Soy sterol esters and beta-sitostanol ester as inhibitors of cholesterol absorption in the human small bowel.
Am J Clin Nutr, 74 (2000), pp. 908-913
[12.]
H.R. Waterham, J. Koster, G.J. Romeijn, R.C. Hennekam, P. Vreken, H.C. Andersson, et al.
Mutations in the 3H-hydroxysterol Delta 24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis.
Am J Hum Genet, 69 (2001), pp. 685-694
[13.]
S.H. Bae, Y.K. Paik.
Cholesterol biosynthesis from lanosterol: development of a novel assay method and characterization of rat live microsomal lanosterol delta 24-reductase.
Biochem J, 326 (1997), pp. 609-616
[14.]
M.J. Koroly, M.E. Dempsey.
Synthesis of delta 5,22-cholestadien-3 1- ol from delta 5,7,22-cholestatrien-3 o-ol by a liver enzyme.
Lipids, 16 (1981), pp. 755-758
[15.]
H. Chen.
Role of cholesterol metabolism in cell growth.
Federation Proc, 43 (1984), pp. 126-130
[16.]
M.S. Brown, J.L. Goldstein.
Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol.
J Biol Chem, 249 (1974), pp. 7306-7314
[17.]
J. Martínez-Botas, Y. Suárez, A.J. Ferruelo, D. Gómez-Coronado, M.A. Lasunción.
Cholesterol starvation decreases p34cdc2 kinase activity and arrests the cell cycle at G2.
Faseb J, 13 (1999), pp. 1359-1370
[18.]
Y. Suárez, C. Fernández, B. Ledo, A.J. Ferruelo, M. Martín, M.A. Vega, et al.
Differential effects of ergosterol and cholesterol on Cdk1 activation and SRE-driven transcription: Sterol specificity for cell cycle progression in human cells.
Eur J Biochem, 269 (2002), pp. 1761-1771
[19.]
C. Fernández, Y. Suárez, A.J. Ferruelo, D. Gómez-Coronado, M.A. Lasunción.
Inhibition of cholesterol biosynthesis by delta 22-unsaturated phytosterols via competitive inhibition of sterol delta 24-reductase in mammalian cells.
Biochem J, 366 (2002), pp. 109-119
[20.]
J. Folch, M. Lees, G.H. Sloane Stanley.
A simple method for the isolation and purification of total lipids from animal tissue.
J Biol Chem, 226 (1957), pp. 497-509
[21.]
P. Carrero, H. Ortega, J. Martínez-Botas, D. Gómez-Coronado, M.A. Lasunción.
Flavonoid-induced ability of minimally modified low-density lipoproteins to support lymphocyte proliferation.
Biochem Pharmacol, 55 (1998), pp. 1125-1129
[22.]
D.W. Peterson.
Effect of soybean sterols in the diet on plasma and liver cholesterol in chicks.
Proc Soc Biol Med, 78 (1951), pp. 143-147
[23.]
T.A. Miettinen, H. Gylling.
Regulation of cholesterol metabolism by dietary plant sterols.
Curr Opin Lipidol, 10 (1999), pp. 9-14
[24.]
J. Plat, R.P. Mensink.
Increased intestinal ABCA1 expression contributes to the decrease in cholesterol absorption after plant sterol consumption.
Faseb J, 16 (2002), pp. 1248-1253
[25.]
H. Gylling, P. Puska, E. Vartiainen, T.A. Miettinen.
Serum sterols during stanol ester feeding in a mildly hypercholesterolemic population.
J Lipid Res, 40 (1999), pp. 593-600
[26.]
M.A. Hallikainen, M.I. Uusitupa.
Effects of low-fat stanol ester-containing margarines on serum cholesterol concentrations as part of a low fat diet in hypercholesterolemic subjects.
Am J Clin Nutr, 69 (1999), pp. 403-410
[27.]
M. Law.
Plant sterol and stanol margarines in health.
British J Med, 320 (2000), pp. 861-864
[28.]
F.J. Field, E. Born, S.N. Mathur.
Effect of micellar beta-sitosterol on cholesterol metabolism in CaCo-2 cells.
J Lipid Res, 38 (1997), pp. 348-360
[29.]
S. Shefer, G. Salen, A. Honda, A.K. Batta, L.B. Nguyen, G.S. Tint, et al.
Regulation of rat hepatic 3R-hydroxysteroid -7-reductase: substrate specificity, competitive and non-competitive inhibition, and phosphorylation/dephosphorylation.
J Lipid Res, 39 (1998), pp. 2471-2476
[30.]
A. Honda, G. Salen, M. Honda, A.K. Batta, G.S. Tint, G. Xu, et al.
3-Hydroxy- 3-methylglutaryl-coenzyme A reductase activity is inhibited by cholesterol and up-regulated by sitosterol in sitosterolemic fibroblasts.
J Lab Clin Med, 135 (2000), pp. 174-179
[31.]
A.K. Bhattacharyya.
Uptake and esterification of plant sterols by rat small intestine.
Am J Physiol, 240 (1981), pp. G50-G55
[32.]
G.V. Vahouny, W.E. Connor, S. Subramaniam, D.S. Lin, L.L. Gallo.
Comparative lymphatic absorption of sitosterol, stigmasterol, and fucosterol and differential inhibition of cholesterol absorption.
Am J Clin Nutr, 37 (1983), pp. 805-809
[33.]
T.A. Miettinen.
Phytosterolaemia, xanthomatosis and premature atherosclerotic arterial disease: a case with high plant sterol absorption, impaired sterol elimination and low cholesterol synthesis.
Eur J Clin Invest, 10 (1980), pp. 27-35
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos