metricas
covid
Buscar en
Clinics
Toda la web
Inicio Clinics Characteristics of chronically critically ill patients: comparing two definition...
Información de la revista
Vol. 66. Núm. 4.
Páginas 701-704 (enero 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
789
Vol. 66. Núm. 4.
Páginas 701-704 (enero 2010)
RAPID COMMUNICATION
Open Access
Characteristics of chronically critically ill patients: comparing two definitions
Visitas
789
Márcio Manozzo Boniatti
Autor para correspondencia
marciobt@terra.com.br

Tel.: (51) 33598637
, Gilberto Friedman, Rodrigo Kappel Castilho, Silvia Regina Rios Vieira, Léa Fialkow
Critical Care Department, Hospital de Clnicas de Porto Alegre, Porto Alegre, RS, Brazil.
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Texto completo
INTRODUCTION

Approximately 80% of the patients admitted into intensive care units survive the acute event, and most remain in this unit briefly.1 However, a subgroup does not recover sufficiently quickly to become independent and from then they recover slowly.2 These patients are called chronically critically ill (CCI) patients, and, depending on the definition criteria, comprise 5 to 10% of the patients admitted into intensive care units.3-5

There is a great deal of controversy regarding the definition of a CCI patient. The two most commonly used definitions are the duration of mechanical ventilation (MV) and tracheostomy.2 The advantage of the latter is that the patients are identified by a code, simplifying the extraction of information from a secondary database.2 However, the great variability in the indication of tracheostomy and its tendency to be performed increasingly early may contribute to the selection of patients with different evolutions than those of chronic patients.6,7 MV varies from 4 to 29 days across different studies.2 A recent consensus conference defined patients with cases of prolonged MV as those who need invasive MV for at least 21 days.8

Regardless of the definition, the main characteristics of this population are repeated episodes of shock and infection during their stays in the Intensive Care Unit (ICU).9 It is clear that a chronic critical illness is not simply an extension of an acute critical illness but, rather, is a complex syndrome characterized by metabolic, neuroendocrine, neuropsychiatric and immunological changes.10

This study aims to compare the two definitions of CCI patients: tracheostomy (Tracheo group) and MV ≥ 21 days (MV group). In addition, we described the clinical, epidemiological and outcome characteristics of the CCI patients and tried to identify the factors that predispose patients to the evolution to chronic critical illness.

METHODS

This prospective observational study was developed in a single ICU with 25 medical-surgical beds at a university hospital in Porto Alegre, Brazil. All of the patients who were admitted into the ICU between February and May 2007 were included in the study. Any patient who stayed in the Intensive Care Unit for less than 24 hours and those who already had a tracheostomy upon admission were excluded.

The study was approved by the Institutional Ethics Committee. Informed consent was waived because no interventions were performed on the patients.

We used two definitions of CCI: tracheostomy performed for continued MV and a duration of mechanical ventilation lasting ≥ 21 days. During the period of study, a tracheostomy was performed only when the attending team deemed it necessary to wean the patient from mechanical ventilation. There were no tracheostomy cases for any other reason.

The following variables were collected at upon admission: age; gender; the main diagnosis in the ICU; where they were before admission to the ICU and the length of stay there; the type of admission; any preexisting illnesses ranked by a McCabe score (either as non-fatal [score of 1], ultimately fatal [score of 2] or rapidly fatal [score of 3]);11 the presence of ARDS (Acute Respiratory Distress Syndrome);12 the presence of shock;13 sepsis; the severity of the disease (according to APACHE II [Acute Physiology and Chronic Health Evaluation] score) 14 and organ dysfunction (defined as a SOFA score > 2 points in the organ systems that were evaluated, which included the cardiovascular, respiratory, neurological, hematological, renal and hepatic systems).15 The daily incidence of ARDS, shock, infection, organ dysfunction, and tracheostomy and the length of time on MV was recorded prospectively. The evaluation outcomes were the evolution to chronic critical illness and the mortality in the ICU or in the hospital.

The results are presented as percentages ± standard deviation. The groups were compared using the χ-square test or Fisher's exact test to compare percentages or Student's t test or the Kruskal-Wallis test to analyze the continuous variables. A multivariate analysis was performed to determine the risk factors for evolution to chronic critical illness using backward stepwise multiple logistic regression. Factors with a value of p < 0.1 (as determined by a univariate analysis) were selected for the model. A value of p< 0.05 was considered to be statistically significant. No statistical analysis was performed when comparing the two definitions of CCI due to the overlap between the two groups.

RESULTS

During the study period, 274 patients were admitted into the ICU. Twenty-two of these patients were excluded because they stayed in the ICU for less than 24 hours, which left 252 patients for the final analysis. Twenty-four (9.5%) patients were considered to be CCI according to one of the two possible definitions. Nineteen patients (7.5%) met the tracheostomy criterion. Fifteen (6.0%) patients had MV for at least 21 days. Ten (66.7%) of these were tracheostomized and, therefore, fulfilled both definitions.

The characteristics of non-chronic patients the tracheo group and the MV group are shown in Table 1.

Table 1.

Clinical characteristics and outcome variables of CCI patients defined by either tracheostomy or MV for ≥ 21 days compared to the remainder of the patients in the ICU.

Variable  Tracheo group  MV group  Non-CCI 
19  15  228 
Age  59.3 ± 17.9  63.9 ± 12.9  54.4 ± 18.6b 
Gender, male n (%)  9 (47.4)  6 (40.0)  121 (53.1) 
Place before admission       
Ward  9 (47.4)  8 (53.3)  57 (25.0)a,b 
Emergency  3 (15.8)  2 (13.3)  61 (26.8) 
Another hospital  3 (15.8)  3 (20.0)  21 (9.2) 
Operating room  4 (21.0)  2 (13.3)  84 (36.8) 
Another place  5 (2.2) 
Length of stay in the previous location  8.9 ± 13.2  7.7 ± 8.9  7.5 ± 11.2 
McCabe score       
16 (84.2)  13 (86.7)  193 (84.6) 
3 (15.8)  2 (13.3)  32 (14.0) 
3 (1.3) 
Type of admission       
Medical  15 (78.9)  13 (86.7)  141 (61.8) 
Elective surgery  3 (15.8)  1 (6.7)  62 (27.2) 
Emergency surgery  1 (5.3)  1 (6.7)  25 (11.0) 
Reason for ICU admission n(%)       
Sepsis  1 (5.3)  2 (13.3)  54 (23.7) 
Cardiovascular  3 (15.9)  2 (13.3)  12 (5.3) 
Respiratory  6 (31.6)  7 (46.7)  33 (14.5) 
Neurological  5 (26,3)  1 (6.7)  29 (12.7) 
Gastrointestinal  7 (3.1) 
Postoperative  4 (21.0)  2 (13.3)  84 (36.8) 
Miscellaneous  1 (6.7)  9 (3.9) 
ARDS       
Upon admission  2 (10.5)  2 (13.3)  6 (2.6) 
During evolution  4 (21.1)  5 (33.3)  15 (6.6)a,b 
Shock       
Upon admission  3 (15.8)  3 (20.0)  66 (28.9) 
During evolution  15 (78.9)  15 (100.0)  96 (42.1)a,b 
Number of shock episodes  1.1 ± 0.7  1.5 ± 0.6  0.5 ± 0.8a,b 
Sepsis upon admission  10 (52.6)  11 (73.3)  98 (43.0)b 
Number of infection episodes  2.7 ± 2.1  3.1 ± 2.2  0.8 ± 0.8a,b 
APACHE II  24.0 ± 8.4  26.1 ± 8.1  19.7 ± 8.0a,b 
SOFA  6.4 ± 2.9  6.9 ± 3.8  5.7 ± 3.7 
SOFA – neurological  1.6 ± 1.6  1.1 ± 1.6  0.7 ± 1.2a 
SOFA – cardiovascular  0.8 ± 1.5  1.1 ± 1.7  1.0 ± 1.5 
SOFA – respiratory  2.8 ± 0.7  3.0 ± 0.5  2.0 ± 1.2a,b 
SOFA – renal  0.7 ± 1.2  0.9 ± 1.2  1.0 ± 1.4 
SOFA – hematological  0.3 ± 0.8  0.6 ± 1.1  0.5 ± 0.9 
SOFA – hepatic  0.2 ± 0.7  0.3 ± 0.9  0.5 ± 0.9 
Dialysis (in evolution)  5 (26.3)  7 (46.7)  44 (19.3)b 
MV (in evolution)  19 (100.0)  15 (100.0)  149 (65.4)a,b 
Days on MV  32.2 ± 25.2  40.7 ± 24.3  3.4 ± 4.6a,b 
Days in the ICU  36.2 ± 25.3  44.6 ± 24.4  6.2 ± 5.4a,b 
Days in the hospital  68.4 ± 42.2  68.9 ± 44.6  26.3 ± 18.3a,b 
ICU mortality  4 (21.1)  7 (46.7)  57 (25.0)b 
Hospital mortality  10 (52.6)  9 (60.0)  78 (34.2)b 

a, p < 0.05 for comparisons between the Tracheo group and the non-CCI patients.

b, p < 0.05 for comparisons between MV group and the non-CCI patients.

CCI, chronically critically ill; MV, mechanical ventilation; ICU, intensive care unit; ARDS, acute respiratory distress syndrome; APACHE, Acute Physiology and Chronic Health Evaluation; SOFA, Sequential Organ Failure Assessment.

When the two CCI patient definitions were compared, the patients in the MV Group were more severe, with more organ dysfunction and higher mortality in the ICU and in the hospital. (A statistical comparison was not performed due to the overlap between the two groups.) When comparing this group of patients to the non-chronic population, a significant difference in both ICU and hospital mortality was observed.

The evolution of the CCI patients was characterized by repeated episodes of infection and shock, a higher incidence of ARDS and a longer duration of MV and length of stay in the ICU and in the hospital.

The median time until a tracheostomy was performed was 13.0 days of MV. Nine (37.5%) patients received MV for more than 30 days, and 2 (8.3%) patients received MV for more than 80 days.

Although they were only 9.5% of the total population, the CCI patients accounted for 846 ICU bed-days, which represented 37.4% of the total number of ICU bed-days during the study period.

The admission factors that were associated with the evolution to chronic critical illness (as assessed by the univariate analysis) were neurological dysfunction, admission from a ward, pulmonary dysfunction and a higher APACHE II score (Table 2). Due to the small number of CCI patients, the multivariate analysis could not identify a variable that was independently associated with the evolution to chronic critical illness.

Table 2.

Predictors of evolution to chronic critical illness.

  CCI (n  =  24)  Non-CCI (n = 228) 
Neurological dysfunction  12 (50.0)  50 (21.9)  <0.01 
Admission from ward  12 (50.0)  57 (25.0)  <0.01 
Pulmonary dysfunction  23 (95.8)  153 (67.1)  <0.01 
APACHE II  24.3 ± 8.0  19.7 ± 8.0  <0.01 

CCI, chronically critically ill; APACHE, Acute Physiology and Chronic Health Evaluation.

Only the patient age was different between surviving and non-surviving CCI patients (Table 3). All of the patients in this group who were more than 75 years old died in the hospital.

Table 3.

Comparison of surviving and non-surviving CCI patients.

Variable  Survivors  Non-survivors 
11  13   
Age  50.2 ± 13.6  68.7 ± 15.0  < 0.01 
Gender, male  6 (54.5)  5 (38.5)  0.68 
Type of admission      0.72 
Medical  8 (72.7)  11 (84.6)   
Elective surgery  2 (18.2)  1 (7.7)   
Emergency surgery  1 (9.1)  1 (7.7)   
ARDS       
Upon admission  2 (18.2)  0.19 
During evolution  4 (36.4)  1 (7.7)  0.14 
Shock       
Upon admission  2 (18.2)  3 (23.1)  0.76 
During evolution  8 (72.7)  12 (92.3)  0.30 
Sepsis  7 (63.6)  7 (53.8)  0.69 
APACHE II  22.6 ± 7.1  25.9 ± 8.6  0.32 
SOFA  6.6 ± 3.0  6.9 ± 3.9  0.83 

CCI, chronically critically ill; ARDS, acute respiratory distress syndrome; APACHE, Acute Physiology and Chronic Health Evaluation; SOFA, Sequential Organ Failure Assessment.

DISCUSSION

The main contribution of our study is the finding that the CCI patients who were defined by a duration of MV of ≥ 21 days were more severely ill than those defined by tracheostomy. The first definition appears to be more specific and manages to include a subgroup that is distinct from the rest of the critically ill population.

We found that MV group had higher APACHE II and SOFA scores, higher rates of infection and shock, a greater need for dialysis and increased mortality in the ICU and in the hospital. Another recent study reported that those who are chronically ill according to a duration of MV of ≥ 21 days had higher mortality and used more resources than those who were chronic due to tracheostomy.6

It may be important to identify patients with a high risk of becoming chronic early to be able to manage them. In our study, a higher APACHE II score, neurological dysfunction, pulmonary dysfunction and admission from a ward were associated with the evolution to chronic critical illness. The severity scores have been identified as predictors of prolonged MV,3,9 although with low accuracy.16,17 Admission from a ward has been previously identified as a factor associated with the evolution to chronic critical illness.3 The status of neurological dysfunction as a predictor of CCI is a new finding. Presumably, this result is due to the very early tracheostomy in neurological patients,18 who do not necessarily depend on MV.

Although CCI patients are in worse condition when they are admitted into the ICU, the impact of a prolonged stay in the ICU on the survival of these patients is still controversial. It is very difficult to compare these studies because they are heterogeneous. Some have found higher mortality in CCI patients,5,19,20 while others have not.6,9 The mortality found in our study varied according to the definition used; the CCI patients on MV for ≥ 21 days had a higher mortality than the rest of the population, and this difference was not found when tracheostomy was the criterion.

Indeed, some patients may benefit from these efforts, and others may not.21 In this scenario, identifying the predictors of a poor prognosis might help doctors choose more aggressive treatments or treatments that prioritize comfort.21 In our study, only patient age was associated with mortality in the CCI patients. The subgroup that was 75 years or older had 100% mortality. Indeed, age appears to be a major factor, as this group was not different from the remainder of the chronic patients in terms of their severity or comorbidity scores. Recently, the ProVent score (a need for a vasopressor, hemodialysis, a platelet count of ≤150×109/L and age ≥ 50 years) was created to predict mortality in this group and had good discriminatory power.22

This study has a few limitations. First, because it was performed in a single ICU, it is difficult to generalize the results. Second, the small number of patients may limit the analysis of the results, thus limiting its generalization even further. Finally, its observational design may have added selection bias, as there is great variability in the indication for a tracheostomy. However, comparing these two definitions of CCI patients will help identify this difference.

CONCLUSIONS

CCI patients are in a more severe condition upon admission into the ICU, and their evolution is characterized by repeated episodes of infection and shock. Defining CCI patients according to their MV time (≥ 21 days) appears to be more specific and includes a subgroup that is markedly different from the remainder of the critically ill population. This should be taken into account in future studies.

REFERENCES
[1]
JR Le Gall , S Lemeshow , G Leleu , J Klar , J Huillard , M Rué , et al.
Customized probability models for early severe sepsis in adult intensive care patients.
[2]
SS Carson , PB Bach .
The epidemiology and costs of chronic critical illness.
Crit Care Clin, 3 (2002), pp. 76
[3]
MG Seneff , JE Zimmerman , WA Knaus , DP Wagner , EA Draper .
Predicting the duration of mechanical ventilation.
[4]
DP Wagner .
Economics of prolonged mechanical ventilation.
Am Rev Respir Dis, 140 (1989), pp. 8
[5]
DK Heyland , E Konopad , TW Noseworthy , R Johnston , A Gafni .
Is it ‘worthwhile’ to continue treating patients with a prolonged stay (> 14 days) in the ICU.
[6]
CE Cox , SS Carson , JA Hoff , MK Olson , JA Govert , L Chelluri .
Differences in one-year health outcomes and resource utilization by definition of prolonged mechanical ventilation: a prospective cohort study.
[7]
A Esteban , I Alia , J Ibanez .
Modes of mechanical ventilation and weaning. A national survey of Spanish hospitals. The Spanish Lung Failure Collaborative Group.
[8]
NR MacIntyre , SK Epstein , S Carson , D Scheinhorn , K Christopher , S Muldoon .
Management of patients requiring prolonged mechanical ventilation: Report of a NAMDRC consensus conference.
[9]
E Estenssoro , R Reina , HS Canales , MG Saenz , FE Gonzalez , MM Aprea , et al.
The distinct clinical profile of chronically critically ill patients: a cohort study.
[10]
D.MNierman, J.ENelson. Chronic critical illness, 18 (2002), pp. 715
[11]
WR Mc Cabe , GG Jackson .
Gram-negative bacteremia. I. Etiology and ecology.
Arch Int Med, 110 (1962), pp. 7
[12]
GR Bernard , A Artigas , KL Brigham , J Carlet , K Falke , L Hudson , et al.
The American-European Consensus Conference on ARDS: definitions, mechanisms, relevant outcomes, and clinical trial coordination.
Am J Respir Crit Care Med, 149 (1994), pp. 24
[13]
RC Bone , RA Balk , FB Cerra , RP Dellinger , AM Fein , WA Knaus , et al.
Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.
[14]
WA Knaus , EA Draper , DP Wagner , JE Zimmerman .
APACHE II: a severity of disease classification system.
Crit Care Med, 13 (1985), pp. 29
[15]
JL Vincent , A de Mendonça , F Cantraine , R Moreno , J Takala , et al.
Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study.
Crit Care Med, 26 (1998), pp. 800
[16]
TL Higgins , WT McGee , JS Steingrub , J Rapoport , S Lemeshow , D Teres .
Early indicators of prolonged intensive care unit stay: impact of illness severity, physician staffing, and pre-intensive care unit length of stay.
Crit Care Med, 31 (2003), pp. 51
[17]
AW Woods , FN MacKirdy , BM Livingston , J Norrie , JC Howie .
Evaluation of predicted and actual length of stay in 22 Scottish intensive care units using the APACHE III system. Acute Physiology and Chronic Health Evaluation.
[18]
BD Freeman , IB Borecki , CM Coopersmith , TJ Buchman .
Relationship between tracheostomy timing and duration of mechanical ventilation in critically ill patients.
[19]
A Combes , MA Costa , JL Trouillet , J Baudot , M Mokhtari , C Gilbert , et al.
Morbidity, mortality, and quality-of-life outcomes of patients requiring > = 14 days of mechanical ventilation.
[20]
CM Martin , AD Hill , K Burns , LM Chen .
Characteristics and outcomes for critically ill patients with prolonged intensive care unit stays.
[21]
SS Carson , PB Bach , L Brzozowski , A Leff .
Outcomes after long-term acute care: an analysis of 133 mechanically ventilated patients.
Am J Respir Crit Care Med, 159 (1999), pp. 73
[22]
SS Carson , J Garrett , LC Hanson , J Lanier , J Govert , MC Brake , et al.
A prognostic model for one-year mortality in patients requiring prolonged mechanical ventilation.
Crit Care Med, 36 (2008), pp. 9
Copyright © 2011. CLINICS
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos