metricas
covid
Buscar en
Clinics
Toda la web
Inicio Clinics Clinical evaluation of a bone cement-injectable cannulated pedicle screw augment...
Información de la revista
Vol. 74.
(enero 2019)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
1427
Vol. 74.
(enero 2019)
ORIGINAL ARTICLE
Open Access
Clinical evaluation of a bone cement-injectable cannulated pedicle screw augmented with polymethylmethacrylate: 128 osteoporotic patients with 42 months of follow-up
Visitas
1427
Zhengdong WangI,#, Yaoyao LiuII,#, Zhigang RongI, Cheng WangI, Xun LiuI, Fei ZhangIII, Zehua ZhangI, Jianzhong XuI,*, Fei DaiI,
I Department of Orthopedics, National & Regional United Engineering Laboratory of Tissue Engineering, Southwest Hospital, Army Medical University, 400038, Chongqing, China
II Department of Spine Surgery, Daping Hospital, Army Medical University, Daping Hospital, 400410, Chongqing, China
III Department of Orthopaedics, General Hospital of Xin Jiang Military Region, 830000, Xinjiang, China
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (3)
Mostrar másMostrar menos
OBJECTIVES:

To evaluate the safety and efficacy of a novel bone cement-injectable cannulated pedicle screw augmented with polymethylmethacrylate in osteoporotic spinal surgery.

METHODS:

This study included 128 patients with osteoporosis (BMD T-score –3.2±1.9; range, –5.4 to –2.5) who underwent spinal decompression and instrumentation with a polymethylmethacrylate-augmented bone cement-injectable cannulated pedicle screw. Postoperative Visual Analogue Scale scores and the Oswestry Disability Index were compared with preoperative values. Postoperative plain radiographs and computed tomography (CT) scans were performed immediately after surgery; at 1, 3, 6, and 12 months; and annually thereafter.

RESULTS:

The mean follow-up time was 42.4±13.4 months (range, 23 to 71 months). A total of 418 polymethylmethacrylate-augmented bone cement-injectable cannulated pedicle screws were used. Cement extravasations were detected in 27 bone cement-injectable cannulated pedicle screws (6.46%), mainly in cases of vertebral fracture, without any clinical sequela. The postoperative low back and lower limb Visual Analogue Scale scores were significantly reduced compared with the preoperative scores (<0.01), and similar results were noted for the Oswestry Disability Index score (p<0.01). No significant screw migration was noted at the final follow-up relative to immediately after surgery (p<0.01). All cases achieved successful bone fusion, and no case required revision. No infection or blood clots occurred after surgery.

CONCLUSIONS:

The polymethylmethacrylate-augmented bone cement-injectable cannulated pedicle screw is safe and effective for use in osteoporotic patients who require spinal instrumentation.

Palabras clave:
Osteoporosis
Pedicle Screw Fixation
Bone Fusion
CICPS
Safety
Effectiveness
Texto completo
INTRODUCTION

In recent decades, internal fixation with a pedicle screw system has been the gold standard for the treatment of an unstable spine 1 caused by degenerative diseases of the thoracolumbar spine, trauma, or tumors. However, an increasing number of patients worldwide who suffer from osteoporosis have poor bone quality that does not provide sufficient strength for common pedicle screws during internal fixation. Several studies have found that increasing the pullout strength of the pedicle screws can effectively solve this problem. Relevant techniques include increasing the diameter or length of the screw 2; improving the design of the screw-rod 3 or the screw threads 4; choosing a proper insertion angle and trajectory 5; stabilizing the spine with bicortical fixation 4,6; and using expandable pedicle screws 4,7,8 and bone cement-augmented pedicle screws 8–11. However, these strategies have potential shortcomings, such as screw loosening or pullout, screw fracture, vascular or visceral injury, and complications associated with cement leakage 9. Therefore, new techniques that improve the safety and effectiveness of instrumentation are required for the surgical treatment of osteoporosis.

Conventional cannulated pedicle screws augmented with bone cement exhibit several disadvantages. These include unsatisfactory diffusion and distribution of the bone cement 9,12; a fixed screw head design that makes the operation difficult to perform 12; and prolonged operative time and increased blood loss due to the installation and disassembly of the bone cement injecting system. Therefore, we designed a bone cement-injectable cannulated pedicle screw (CICPS) that solved these problems using three radial holes, a flexible screw head, and an injection system.

We previously demonstrated the improved biomechanical stability of the polymethylmethacrylate (PMMA)-augmented CICPS in osteoporotic bone 13,14. In the present retrospective study, we evaluated the long-term safety and effectiveness of the PMMA-augmented CICPS in 128 osteoporotic patients with degenerative spinal diseases.

MATERIALS AND METHODSPatients

The institutional review board of Southwest Hospital, Chongqing, China, approved this retrospective study, and all subjects provided informed consent. The study included a population of 128 patients (29 men and 99 women) with osteoporosis and degenerative spinal diseases who underwent spinal decompression and fixation with PMMA-augmented CICPS at our hospital between March 2011 and March 2015. Diseases included degenerative lumbar spondylolisthesis, lumbar disc herniation with lumbar spinal stenosis, compression fractures, and ankylosing spondylitis (AS).

Osteoporosis in these patients was diagnosed according to the World Health Organization's diagnostic criteria with a T-score≤–2.5 15 by examining the lumbar spine using a Hologic Discovery Delphi SL, QDR® Series (Hologic, Inc., Bedford, MA, USA) with dual-energy X-ray absorptiometry (DXA). Diagnoses of lumbar spondylolisthesis, lumbar disc herniation with lumbar spinal stenosis, and compression fractures were based on clinical symptoms, such as low back pain, radiating pain, numbness, and muscle weakness in the lower limbs and radiological findings in plain-film imaging, computed tomography (CT) 11, and magnetic resonance imaging (MRI). Kyphosis was diagnosed by the appearance of a deformed spine on physical examination and radiologically. Operative management has been advocated for adolescents with progressive kyphosis greater than 70°, patients with progressive kyphosis despite bracing, patients with intractable back pain, and patients with an unacceptable cosmetic deformity 16. All patients had one or more diagnoses; however, we only presented the main diagnosis that provided surgical indications. All patients underwent surgery when their symptoms and signs did not improve after conservative treatment for at least six months. Patients who had blood coagulation disorders or who were allergic to the implants were excluded.

Implant Design

The CICPSs used in this study (Figure 1A) were 3.5-5.0 mm in diameter and 55-70 mm long with a 3-mm pitch (Kanghui Medical Devices, Jiangsu, China). The pedicle screw had a cannulation diameter of 2.2 mm with three radial holes at the distal end (round, 2 mm diameter; oval, 3 mm long and 2 mm wide; and U-shape, 4 mm long and 2 mm wide). The multiaxis or single-axis screw head was designed to facilitate the operative process.

Figure 1.

(A) The design of the CICPS; (B) The CICPS connects to the specially designed bone cement syringe and the T-shaped handle through an adapter.

(0.11MB).
Surgical Procedures

The patients were positioned prone and were placed under general anesthesia. The surgical procedures included removal of the intervertebral disc, spinal canal decompression, spinal osteotomy and orthopedics, bone graft fusion and posterior internal fixation with PMMA-augmented CICPS, and laminectomy with posterolateral fusion.

The CICPS was implanted with a relatively larger insertion angle to leave more space for the cement. To avoid bone cement leakage to the spinal canal, a screw with a length that was 80-90% of the diameter of the vertebral body was selected. After the CICPS was inserted, PMMA (approximately 1.5 mL) was injected via a dedicated syringe and adapter (Figure 1B and C) and distributed into the surrounding trabeculae bone through the three side holes. An X-ray lateral view of the vertebrate was performed during the PMMA injection to observe the distribution of bone cement. The PMMA injection was stopped when the cement leaked to the posterior part of the screw.

Postoperative Management

All patients were placed on bedrest for at least 3 days after surgery. Drainage tubes were removed when the volume of drainage was less than 50 mL within 24 hours. Cefazolin sodium (2 g, intravenous drip, every 12 hours) was routinely used for 24 hours to prevent infection. Each patient wore a custom-made lumbosacral or vest orthosis for at least 3 months until fusion was achieved. Patients were encouraged to attempt ambulation 3 days after surgery and allowed to participate in positive activity or go to work depending on his/her recovery and neurological situation.

Follow-up

All patients underwent follow-up at 1, 3, 6, and 12 months after surgery and annually thereafter. During each follow-up, all patients underwent neurological evaluation and radiological examination. Visual analog scale (VAS) scores were used to evaluate pain severity, and the Oswestry disability index (ODI) score was used to evaluate disability. Any complications, such as cement leakage, infection, and blood clots, were recorded.

All patients underwent pre- and postoperative X-rays and 3D-CT and during each outpatient follow-up. Pedicle screw loosening or pullout was determined using anteroposterior, lateral, and standing flexion-extension lumbosacral plain X-rays according to the distance between the screw tip and the anterior surface of the vertebral body (distance x) and the distance from the screw tip to the superior endplate of the vertebral body (distance y).

In patients with lumbar spondylolisthesis, the angular displacement and the Taillard index were measured to assess the degree of slipping of the vertebral body 17.

CT scans were performed to determine interbody fusion and cement leakage 6 and 12 months after surgery. Successful fusion was assessed in accordance with Sapkas' and Christiansen's methods 18,19. Screw loosening was considered radiolucent at one millimeter or wider at the bone/screw interface 12. Here, 3D-CT can reflect the shape of the leaky bone cement. For example, when the bone cement seeps into the intervertebral space, it diffuses into the surrounding area and spreads out irregularly. If it flows into a blood vessel, it would exhibit an approximately regular strip shape, which is similar the appearance of the vessel.

Statistical Analysis

Statistical analyses were performed using SPSS 18.0 for Windows (SPSS, Chicago, IL). The data are presented as the mean ± standard deviation (SD). A paired t-test was used to compare the continuous variables at final follow-up to the corresponding preoperative values, including VAS and ODI scores, distances x and y, angular displacement, and Taillard index. A p-value<0.05 was considered statistically significant.

RESULTS

In total, 128 patients were included in this study (29 men and 99 women; aged 60.7±11.0 y, range, 35 to 83 y; Tables 1 and 2). The cases consisted of main diagnoses of spondylolisthesis, lumbar disc herniation/lumbar spinal stenosis, compression fractures, and AS with kyphosis deformity in 53, 44, 19 and 12 patients, respectively. One or more diagnoses may be noted in one patient. All patients had osteoporosis (bone mineral density T-score≤–2.5).

Table 1.

Case report form.

No  Gender  Age  Surgical Indication  BMD,1 T-score  Preop2 VAS14  Final3 VAS1  Preop VAS25  Final VAS2  Preop ODI (%)  Final ODI (%)  Leakage (+/-)6  Follow-up (mo) 
Female  51  Lumbar spondylolisthesis  -2.9  6.00  1.00  5.00  0.00  31.11  2.22  69 
Female  54  Lumbar spondylolisthesis  -3.6  5.00  0.00  0.00  0.00  51.11  0.00  67 
Male  51  Lumbar spondylolisthesis  -2.6  7.00  3.00  5.00  0.00  57.78  6.67  66 
Female  70  Lumbar spondylolisthesis  -5.0  6.00  1.00  0.00  0.00  62.22  0.00  66 
Female  59  Lumbar spondylolisthesis  -3.0  5.00  0.00  0.00  0.00  42.22  0.00  65 
Male  64  Vertebral fracture  -2.9  6.00  1.00  0.00  1.00  60.00  6.67  63 
Female  67  Vertebral fracture  -4.5  7.00  1.00  0.00  0.00  73.33  8.89  63 
Female  66  Vertebral fracture  -2.8  4.00  0.00  0.00  0.00  55.56  0.00  63 
Male  73  LSS  -3.0  1.00  0.00  2.00  0.00  22.22  0.00  62 
10  Female  58  LDH  -3.1  5.00  0.00  3.00  0.00  46.67  0.00  61 
11  Male  74  LDH  -3.7  6.00  0.00  3.00  0.00  51.11  0.00  61 
12  Female  43  Ankylosing spondylitis  -2.8  4.00  2.00  0.00  0.00  50.00  0.00  61 
13  Female  74  LDH  -2.8  7.00  1.00  2.00  1.00  82.22  11.11  61 
14  Male  70  Lumbar spondylolisthesis  -3.3  6.00  1.00  6.00  0.00  53.33  0.00  60 
15  Male  47  Ankylosing spondylitis  -4.5  5.00  0.00  0.00  0.00  53.33  0.00  60 
16  Male  46  Vertebral fracture  -3.5  6.00  0.00  0.00  0.00  91.11  77.78  60 
17  Female  60  LDH  -2.6  4.00  1.00  4.00  1.00  40.00  11.11  60 
18  Female  67  LDH  -4.1  5.00  0.00  5.00  0.00  51.11  0.00  60 
19  Female  75  Vertebral fracture  -3.5  7.00  1.00  0.00  0.00  60.00  0.00  60 
20  Female  62  LDH  -2.6  6.00  1.00  5.00  1.00  73.33  15.56  60 
21  Female  64  LDH  -2.5  5.00  1.00  5.00  1.00  62.22  13.33  59 
22  Female  63  Lumbar spondylolisthesis  -4.1  3.00  0.00  4.00  0.00  51.11  0.00  58 
23  Female  64  Lumbar spondylolisthesis  -3.1  5.00  1.00  0.00  0.00  44.44  0.00  57 
24  Female  59  Vertebral fracture  -3.9  5.00  0.00  0.00  0.00  53.33  0.00  57 
25  Female  59  LDH  -3.8  4.00  1.00  6.00  0.00  40.00  0.00  57 
26  Female  61  LDH  -5.2  5.00  1.00  6.00  0.00  40.00  0.00  57 
27  Female  67  Lumbar spondylolisthesis  -3.3  4.00  0.00  0.00  0.00  31.11  0.00  57 
28  Female  53  Lumbar spondylolisthesis  -3.7  5.00  2.00  3.00  0.00  42.22  0.00  56 
29  Female  67  LDH  -5.4  3.00  1.00  3.00  1.00  22.22  13.33  55 
30  Female  69  LSS  -2.6  6.00  1.00  6.00  0.00  60.00  0.00  54 
31  Female  59  Lumbar spondylolisthesis  -2.6  3.00  0.00  4.00  0.00  20.00  0.00  54 
32  Female  46  Lumbar spondylolisthesis  -3.5  3.00  0.00  0.00  0.00  22.22  0.00  50 
33  Female  57  Lumbar spondylolisthesis  -2.7  2.00  0.00  2.00  0.00  11.11  0.00  55 
34  Male  60  LDH  -3.1  2.00  0.00  3.00  0.00  8.89  0.00  55 
35  Female  71  LDH  -2.6  5.00  2.00  5.00  0.00  51.11  20.00  54 
36  Male  45  Ankylosing spondylitis  -2.6  2.00  2.00  0.00  0.00  62.22  11.11  54 
37  Female  51  Ankylosing spondylitis  -2.8  2.00  2.00  0.00  0.00  60.00  6.67  54 
38  Female  59  LDH  -2.6  4.00  1.00  5.00  1.00  40.00  8.89  53 
39  Female  61  Lumbar spondylolisthesis  -3.5  3.00  0.00  3.00  0.00  31.11  0.00  51 
40  Female  47  Lumbar spondylolisthesis  -3.2  3.00  0.00  0.00  0.00  48.89  0.00  50 
41  Female  62  Lumbar spondylolisthesis  -2.9  3.00  0.00  3.00  0.00  31.11  0.00  50 
42  Female  59  Lumbar spondylolisthesis  -2.7  3.00  0.00  0.00  0.00  40.00  0.00  49 
43  Female  54  LDH  -4.2  3.00  0.00  0.00  0.00  31.11  0.00  49 
44  Female  57  LDH  -2.6  5.00  0.00  0.00  0.00  60.00  0.00  49 
45  Male  69  Ankylosing spondylitis  -4.3  4.00  2.00  0.00  0.00  53.33  22.22  49 
46  Male  64  Ankylosing spondylitis  -4.2  6.00  2.00  0.00  0.00  82.22  0.00  46 
47  Female  69  Lumbar spondylolisthesis  -3.0  7.00  2.00  7.00  0.00  80.00  0.00  46 
48  Male  42  Ankylosing spondylitis  -2.6  4.00  3.00  0.00  0.00  51.11  11.11  46 
49  Female  69  Lumbar spondylolisthesis  -3.8  5.00  2.00  5.00  0.00  62.22  0.00  45 
50  Female  64  LDH  -2.6  4.00  0.00  4.00  0.00  46.67  0.00  45 
51  Female  75  Lumbar spondylolisthesis  -3.6  5.00  1.00  5.00  0.00  57.78  13.33  44 
52  Female  49  Lumbar spondylolisthesis  -2.7  3.00  0.00  3.00  0.00  42.22  0.00  43 
53  Female  48  Lumbar spondylolisthesis  -3.0  5.00  1.00  5.00  0.00  31.11  0.00  43 
54  Male  69  LDH  -2.5  6.00  1.00  5.00  0.00  57.78  8.89  42 
55  Male  63  Lumbar spondylolisthesis  -2.8  4.00  0.00  3.00  0.00  40.00  0.00  42 
56  Female  68  Vertebral fracture  -3.5  3.00  1.00  0.00  0.00  40.00  6.67  42 
57  Female  48  Vertebral fracture  -2.5  3.00  1.00  0.00  0.00  62.22  0.00  42 
58  Female  63  LDH  -3.2  5.00  1.00  5.00  1.00  62.22  8.89  41 
59  Female  62  Lumbar spondylolisthesis  -4.5  3.00  0.00  2.00  0.00  31.11  0.00  41 
60  Female  63  LSS  -2.6  4.00  1.00  2.00  0.00  60.00  0.00  41 
61  Female  68  LDH  -3.9  4.00  0.00  3.00  1.00  44.44  2.22  41 
62  Female  57  Vertebral fracture  -3.5  3.00  0.00  0.00  0.00  28.89  6.67  41 
63  Female  57  Vertebral fracture  -3.3  3.00  0.00  0.00  0.00  44.44  0.00  40 
64  Female  61  Lumbar spondylolisthesis  -3.4  5.00  1.00  1.00  1.00  60.00  11.11  40 
65  Female  51  LDH  -2.7  4.00  2.00  5.00  2.00  60.00  0.00  39 
66  Female  58  Lumbar spondylolisthesis  -3.6  3.00  0.00  0.00  0.00  53.33  0.00  39 
67  Male  58  LDH  -2.6  3.00  0.00  3.00  0.00  51.11  0.00  39 
68  Female  65  Vertebral fracture  -3.8  5.00  2.00  4.00  0.00  62.22  17.78  36 
69  Female  66  LDH  -3.5  6.00  1.00  5.00  1.00  82.22  64.44  37 
70  Female  72  Lumbar spondylolisthesis  -3.0  4.00  2.00  0.00  0.00  60.00  0.00  38 
71  Female  66  Vertebral fracture  -3.7  7.00  0.00  0.00  0.00  80.00  0.00  38 
72  Female  59  LDH  -2.5  4.00  0.00  3.00  0.00  51.11  0.00  39 
73  Female  57  Lumbar spondylolisthesis  -2.9  4.00  1.00  2.00  0.00  60.00  0.00  38 
74  Female  54  Lumbar spondylolisthesis  -2.8  6.00  1.00  1.00  0.00  71.11  0.00  38 
75  Female  68  Vertebral fracture  -4.7  6.00  0.00  5.00  0.00  73.33  0.00  37 
76  Male  46  LDH  -2.5  5.00  0.00  6.00  0.00  75.56  0.00   
77  Male  81  Lumbar spondylolisthesis  -3.6  5.00  1.00  4.00  0.00  51.11  11.11  37 
78  Female  44  LDH  -2.5  6.00  2.00  4.00  0.00  82.22  0.00  36 
79  Male  62  Lumbar spondylolisthesis  -2.6  8.00  1.00  1.00  0.00  80.00  22.22  36 
80  Male  59  Lumbar spondylolisthesis  -2.6  5.00  1.00  1.00  0.00  57.78  0.00  36 
81  Female  61  Lumbar spondylolisthesis  -2.9  4.00  0.00  2.00  0.00  71.11  0.00  36 
82  Female  59  LDH  -2.5  5.00  0.00  4.00  0.00  80.00  0.00  36 
83  Female  59  Lumbar spondylolisthesis  -2.6  4.00  1.00  4.00  1.00  53.33  0.00  36 
84  Female  48  Ankylosing spondylitis  -2.5  4.00  2.00  0.00  0.00  82.22  0.00  36 
85  Female  76  LSS  -3.1  4.00  1.00  4.00  1.00  73.33  13.33  36 
86  Female  76  Lumbar spondylolisthesis  -3.3  5.00  0.00  5.00  0.00  62.22  0.00  35 
87  Female  66  Lumbar spondylolisthesis  -3.6  4.00  1.00  4.00  1.00  51.11  13.33  35 
88  Male  35  Ankylosing spondylitis  -3.0  3.00  2.00  0.00  0.00  42.22  0.00  34 
89  Female  67  LDH  -2.7  3.00  0.00  3.00  0.00  60.00  11.11  34 
90  Female  64  Lumbar spondylolisthesis  -3.1  4.00  1.00  4.00  1.00  42.22  0.00  33 
91  Female  56  Lumbar spondylolisthesis  -3.0  3.00  0.00  2.00  0.00  31.11  0.00  33 
92  Female  63  LDH  -2.8  3.00  0.00  2.00  0.00  40.00  8.89  33 
93  Female  67  Lumbar spondylolisthesis  -3.7  5.00  1.00  1.00  0.00  51.11  15.56  33 
94  Female  73  Vertebral fracture  -3.8  5.00  2.00  0.00  0.00  73.33  17.78  32 
95  Female  57  Vertebral fracture  -3.0  4.00  0.00  1.00  0.00  48.89  0.00  30 
96  Female  55  Vertebral fracture  -2.5  6.00  0.00  0.00  0.00  71.11  0.00  30 
97  Female  56  Lumbar spondylolisthesis  -2.5  3.00  0.00  1.00  0.00  40.00  0.00  30 
98  Female  59  LSS  -2.9  6.00  2.00  4.00  0.00  73.33  13.33  28 
99  Male  72  LSS  -3.5  3.00  2.00  1.00  0.00  42.22  6.67  24 
100  Female  60  Lumbar spondylolisthesis  -2.5  6.00  1.00  1.00  0.00  71.11  8.89  26 
101  Male  50  Vertebral fracture  -3.6  3.00  0.00  3.00  0.00  33.33  0.00  27 
102  Female  71  LDH  -2.6  3.00  0.00  3.00  0.00  42.22  4.44  29 
103  Male  59  Ankylosing spondylitis  -2.5  2.00  1.00  0.00  0.00  11.11  0.00  28 
104  Female  73  LDH  -2.5  5.00  1.00  3.00  1.00  53.33  11.11  28 
105  Female  52  Ankylosing spondylitis  -2.6  3.00  0.00  0.00  0.00  51.11  0.00  27 
106  Female  48  Lumbar spondylolisthesis  -2.7  3.00  0.00  0.00  0.00  48.89  0.00  26 
107  Male  51  Ankylosing spondylitis  -2.9  3.00  1.00  0.00  0.00  42.22  0.00  26 
108  Male  53  LDH  -3.6  3.00  0.00  1.00  0.00  42.22  0.00  26 
109  Male  59  Vertebral fracture  -3.4  5.00  0.00  0.00  0.00  62.22  0.00  26 
110  Female  69  Lumbar spondylolisthesis  -3.0  3.00  1.00  3.00  0.00  51.11  11.11  24 
111  Female  74  LSS  -4.0  5.00  1.00  4.00  0.00  71.11  0.00  26 
112  Female  60  Lumbar spondylolisthesis  -4.0  3.00  0.00  1.00  0.00  33.33  0.00  26 
113  Female  73  LDH  -2.5  3.00  0.00  2.00  0.00  28.89  0.00  25 
114  Male  71  Lumbar spondylolisthesis  -3.5  3.00  1.00  2.00  0.00  31.11  8.89  26 
115  Male  64  LDH  -2.9  6.00  0.00  4.00  0.00  82.22  15.56  26 
116  Female  69  Lumbar spondylolisthesis  -3.8  6.00  2.00  3.00  0.00  84.44  20.00  26 
117  Female  51  Vertebral fracture  -4.3  3.00  0.00  0.00  0.00  62.22  13.33  25 
118  Female  62  Lumbar spondylolisthesis  -2.7  3.00  0.00  3.00  1.00  42.22  0.00  24 
119  Female  61  Lumbar spondylolisthesis  -2.5  2.00  1.00  3.00  0.00  31.11  0.00  25 
120  Female  64  LDH  -2.7  5.00  1.00  5.00  0.00  62.22  8.89  24 
121  Female  72  Lumbar spondylolisthesis  -3.6  3.00  0.00  3.00  0.00  37.78  11.11  24 
122  Male  58  LDH  -2.5  5.00  0.00  4.00  0.00  31.11  0.00  24 
123  Female  73  Lumbar spondylolisthesis  -2.9  6.00  2.00  4.00  0.00  62.22  2.22  23 
124  Female  68  LDH  -4.3  6.00  1.00  5.00  1.00  82.22  2.22  23 
125  Female  49  Lumbar spondylolisthesis  -3.3  6.00  0.00  2.00  0.00  35.56  4.44  23 
126  Female  83  LSS  -2.7  4.00  0.00  3.00  1.00  51.11  2.22  23 
127  Female  68  Lumbar spondylolisthesis  -4.7  3.00  1.00  0.00  0.00  42.22  8.89  71 
128  Female  59  Lumbar spondylolisthesis  -3.0  4.00  1.00  5.00  0.00  51.11  11.11  35 

Abbreviation: LDH/LSS, lumbar disc herniation/lumbar spinal stenosis.

1

BMD, bone mineral density.

2

Preop, preoperation.

3

Final, final follow-up.

4

VAS1, VAS low back.

5

VAS2, VAS lower limbs.

6

Leakage did or did not occur.

Table 2.

Baseline demographic and clinical characteristics of 128 patients with PMMA-augmented CICPS in the osteoporotic spine.a

    Values 
Mean age, y    61.2±11.0 (35 to 83) 
Gender M:F, n    29:99 
BMD, T-score    -3.20±0.66 (-5.40 to -2.50) 
Follow-up, mo    42.4 ± 13.4 (23 to 71) 
Surgical indicationb  Lumbar spondylolisthesis  53 (41.4%)/178 
  LDH/LSS  44 (34.4%)/120 
  Vertebral fracture  19 (14.8%)/68 
  Ankylosing spondylitis  12 (9.4%)/52 
  Total  128 (100%)/418 
Operative time, min    216.6±63.4 (95 to 398) 
Blood loss, mL    553.7±125.9 (100 to 1400) 
Bone cement, mL    1.50±0.11 (1.30-1.60) 

Abbreviations: LDH/LSS, lumbar disc herniation/lumbar spinal stenosis; BMD, bone mineral density.

a

Reported as the mean ± SD (range), unless noted otherwise

b

n (%)/CICPS, n.

Additionally, 418 CICPSs were used during the surgeries (Table 1). The mean volume of PMMA injected into each screw was 1.51±0.13 mL (range, 1.2-1.7 mL). The operative time was 216.6±63.4 min (range, 95 to 398 min), and the average blood loss was 553.7±125.9 mL (range, 100 to 1400 mL).

No nerve, blood vessel, or viscera injury occurred during surgery (Table 3). During PMMA injection, no cement leaked into the operative site, and no contamination occurred during the operative procedures. In total, 27 PMMA leakages (6.46%) to the front of 25 vertebral bodies (9.12%) were identified in 20 patients (15.63%) during the procedure. All of these events occurred in prevertebral veins without any observed symptoms. No continuous postoperative bleeding or infection was noted. No symptomatic embolism occurred during hospitalization or follow-up.

Table 3.

Complications in the 128 patients with PMMA-augmented CICPS.

Complication  n (%)
Cement extravasations*  Surgical Indication  Leakages  Vertebral bodies  Patients, n (%)  Gender M:F, n (%)  Age, y#  BMD, T-score# 
  Lumbar spondylolisthesis  3 (1.69%)  3 (2.75%)  3 (5.66%)  0:3 (0.00%:100.00%)  53.33±6.81 (48 to 61)  -2.70±0.20 (-2.90 to -2.50) 
  LDH/LSS  7 (5.83%)  6 (6.00%)  5 (11.36%)  2:3 (40.00%:60.00%)  65.00±2.65 (62 to 69)  -2.80±0.42 (-3.50 to -2.50) 
  Vertebral fracture  15 (22.06%)  15 (40.54%)  11 (57.89%)  4:7 (36.36%:63.64%)  59.55±8.71 (46 to 73)  -3.53±0.59 (-4.70 to -2.50) 
  Ankylosing spondylitis  2 (3.85%)  1 (3.57%)  1 (8.33%)  1:0 (100.00%:0.00%)  51±0.00 (51 to 51)  -2.90±0.00 (-2.90 to -2.90) 
  Total  27 (6.46%)  25 (9.12%)  20 (15.63%)  7:13 (35.00%:65.00%)  59.55±8.00 (46 to 73)  -3.19±0.61 (-4.70 to -2.50) 
Pulmonary embolism  —  —  —  0 (0.00%)  —  —  — 
Infection  —  —  —  0 (0.00%)  —  —  — 

Abbreviations: LDH/LSS, lumbar disc herniation/lumbar spinal stenosis; BMD, bone mineral density.

*

All cement extravasations occurred in paravertebral veins.

#

Reported as the mean ± SD (range).

All patients underwent follow-up for an average of 42.4±13.4 months (range, 23 to 71 months). Pain and nerve compression symptoms were relieved in all patients postoperatively. The ODI at the final follow-up improved significantly compared with preoperative scores (ODI, p<0.001), and similar results were noted in the VAS scores for the low back and lower limbs (each, p<0.001, n=87 cases with lower limb pain). Spondylolisthesis and spinal kyphosis deformity were corrected satisfactorily after surgery, and no screw loosening, pullout, or fracture occurred (Table 4, and Figures 2 and 3).

Table 4.

Clinical and radiographic data analysis at three time points for the 128 patients with PMMA-augmented CICPSs inserted in the osteoporotic spine; data are reported as the mean ± SD (range).

  Preoperative  Postoperative  Final follow-up 
VAS low back, mm  4.34±1.38 (0.00-8.00)  —  0.73±0.78 (0.00-3.00)a 
VAS lower limbs, mm  3.45±1.49 (1.00-7.00)  —  0.23±0.45 (0.00-2.00)a 
ODI, %  52.20±17.27 (8.89-91.11)  —  5.19±10.33 (0.00-77.78)a 
Height, intervertebral space, mm  9.04±3.11 (1.76-16.41)  12.26±1.90 (7.30-17.73)b  11.89±1.93 (6.32-16.17)a,c 
Height, vertebral body, mm  16.16±6.23 (5.61-27.73)  22.08±5.01 (13.09-31.37)b  22.32±5.21 (12.35-31.57)a 
Angular displacement, degree  7.09±5.67 (0.34-25.74)  10.75±4.87 (1.37-26.71)b  10.16±5.00 (0.87-24.31)a 
Taillard index, %  27.02±12.14 (9.93-77.85)  6.11±8.30 (0.00-48.02)b  6.19±7.74 (0.00-45.27)a 
x, mm  —  4.71±2.94 (0.00-19.21)  4.82±2.98 (0.00-19.74)c 
y, mm  —  8.37±2.96 (0.00-18.85)  8.48±2.91 (0.00-19.01)c 

Abbreviations: x, Distance between the screw tip and the anterior surface of the vertebral body; y, distance from the screw tip to the superior endplate of the vertebral body.

a

p<0.05 Preoperative cf. final follow-up;

b

p<0.05 Preoperative cf. postoperative;

c

p<0.05 Postoperative cf. final follow-up.

Figure 2.

X-ray images. (A) before surgery; (B) immediately after surgery; and (C) at the final follow-up at 52 months in a 31-year-old man with a 4-year history of lower back pain and progressive kyphosis. AS and kyphosis with severe osteoporosis were diagnosed (T-score=–3.0). The patient underwent a partial osteotomy of the key vertebrae without intervertebral fusion. PMMA-augmented CICPSs were used at the ends of the internal fixation instrument, and good spinal correction was obtained.

(0.11MB).
Figure 3.

X-ray and CT images. (A) before; (B) immediately after surgery; and (C) at the final follow-up at 57 months in a 67-year-old woman with a 2-year history of lower back pain. L4 spondylolisthesis and severe osteoporosis was diagnosed (T-score=–3.7). The patient underwent transforaminal lumbar interbody fusion with PMMA-augmented CICPSs bilaterally, and the displacement was completely corrected. No screw loosening occurred, and successful fusion was achieved at the final follow-up of 57 months. Low back pain was ameliorated.

(0.07MB).

New bone formation within the vertebrae was observed. CT scan results revealed that firm fusions were achieved 6 to 12 months after surgery, and the fusion rate was 100%. No revision was needed during the follow-up. During the follow-up, no patients experienced infection, and pulmonary embolism was not observed.

DISCUSSION

Although pedicle screws are the workhorse of spinal instrumentation in the adult spine 20, pedicle screw loosening or pullout is the most severe and common problem in osteoporotic patients who undergo spinal surgery that requires spine internal fixation. Although using larger and longer pedicle screws or screws with various designs of screw-rods and screw-threads increase the purchase of the pedicle screws in the inserted vertebrae 5,21–23, bone cement-augmented pedicle screws have been considered more suitable to stabilize and support the degenerating spinal column 24,25. Several experimental and clinical studies have demonstrated that PMMA augmentation can improve resistance to pullout in osteoporotic and normal vertebrae 1,26–28. In the present long-term follow-up study, we tested our redesigned PMMA-augmented CICPSs, which contain three radial holes and flexible screw heads. We found that this new design was safe and effective for osteoporotic patients who needed spinal instrumentation.

Among bone cements, PMMA is the most frequently used in clinical practice due to its low cost, high availability, and strong mechanical properties 8. PMMA is commonly injected directly or via fenestrated screws during vertebroplasty and after the insertion of a balloon in kyphoplasty 8,9,29. The former method is preferable and can result in an approximately 80% increase in pullout strength compared with unaugmented screws 30. The distribution of PMMA injected before insertion of the pedicle screw is not controllable; therefore, there is a high risk of leakage as the screw displaces the cement upon instrumentation 9. PMMA injected via fenestrated screws is better controlled and represents a more effective, safe method.

The presence of side holes in a screw increases the purchase. Chen et al. 31 found that the maximum axial pullout strength of the augmented pedicle screw increased as the number of side holes increased, and bone cement exuded mainly from the proximal screw holes rather than from distal holes. These findings indicate that a cannulated pedicle screw with a side hole closer to the screw head can provide greater maximum axial pullout strength because this screw allows more bone cement to outflow and distribute more widely in less time. However, increasing the number of side holes can cause the pedicle screw to more easily fracture, and a side hole close to the screw head can result in increased risk of bone cement leakage.

To solve these problems, we designed a novel cannulated pedicle screw, the CICPS, which has three side holes of different sizes and shapes. The side holes are arranged from smallest to largest from the distal end of the screw and proceeded along two-fifths of the screw length. The central hollow tract is closed at the screw tip. This design allows almost even pressure in the three side holes during PMMA injection; thus, PMMA can be uniformly distributed around the distal half of the screw. This notion has been confirmed in imaging results 32. Uniform distribution of the cement effectively avoids clinical complications related to cement leakage into the spinal canal. This type of cannulated screw is putatively significantly better compared with other existing types of cannulated screw systems 13,14.

Using less PMMA has some advantages, such as reducing the risk of bone cement leakage and related complications and reducing methyl methacrylate toxicity. In the present study, the mean volume of PMMA used was 1.51±0.13 mL (range, 1.2-1.7 mL), which is considerably less than that reported by (2.89±0.72 mL, range 2.0-5.0 mL) Frankel et al. 33 or (1.83±0.11 mL, range 1.7-2.0 mL) Moon et al. 12. The cement extravasation rate (15.63%) was considerably reduced compared with that in a recent study by Janssen et al. 34 (66.7%), and more than half of the leakage occurred in vertebral fracture cases. The mean BMD (-3.53±0.59) was reduced compared with other reports (-2.70±0.20, -2.80±0.42 and -2.90±0.00). Thus, we questioned whether the lower BMD was the true factor leading to the higher extravasation rate. We analyzed the relationship between cement extravasation rate and BMD. The rate was 5.88% (1/17) in cases with a BMD≤-4.0, compared with the rate of 17.31% (9/52) for cases with -4.0

In the present study, the design of the multiaxis or single-axis screw head and the dedicated syringe and adapter of the CICPS facilitates the surgical procedure and consequently reduces the operative time and intraoperative blood loss. In this study, the mean operative time was 216.6±63.4 min (range, 95 to 398 min), and the average blood loss was 553.7±125.9 mL (range, 100 to 1400 mL).

In the present study, symptom relief and functional improvement was observed in all patients after surgery. This beneficial effect may be associated with solid internal fixation. Pedicle screw loosening and pullout are the main reasons for internal fixation failure with an incidence of 0.6-11% 35. No screw loosening or pullout occurred after a mean follow-up of 42 months. Radiological images during the follow-up revealed no obvious displacement of the pedicle screw tips, and bone fusion was achieved in all patients 6 months after surgery. In addition, several clinical reports have demonstrated that screw breakage results in pedicle screw fixation failure. In the present study, there was no fixation failure and no pedicle screw breakage.

We found that the use of PMMA-augmented CICPS improved the angular displacement and the Taillard index relative to preoperative values in patients with lumbar spondylolisthesis. This finding suggests that PMMA-augmented CICPS is effective for the treatment of lumbar spondylolisthesis with osteoporosis. In patients with AS and kyphosis, although the PMMA-augmented CICPS cannot cure AS or prevent the worsening of deformity at the nonsurgical spinal level, the internal fixation system with PMMA-augmented CICPS benefited the surgical segments.

In summary, we found that use of the novel PMMA-augmented CICPS in osteoporotic patients was associated with good clinical outcomes and the absence of obvious complications during a long-term follow-up of 42 months after spinal surgery. Our study suggests that the internal fixation system with PMMA-augmented CICPS is effective and safe for various unstable osteoporotic spines. According to the results, we also concluded that we should be more cautious in using PMMA-augmented CICPS in cases with a BMD less than -4.0, especially in vertebral fracture patients.

Although we obtained positive outcomes, there were several limitations to this study. First, this study was retrospective in nature and was an open study without a control group. Further clinical randomized controlled studies using this method in a larger number of cases will provide additional data to optimize the procedure, which may contribute to improving healing and maximizing functional outcomes.

AUTHOR CONTRIBUTIONS

Wang Z drafted the study concepts and designed the study. Liu Y performed the experimental studies, acquired and analyzed the data, and drafted the manuscript. Wang Z and Liu Y contributed equally to this work. Liu Y, Zhang F, Rong Z, Wang C, Liu X and Zhang Z performed the literature research and statistical analyses. Xu J and Dai F are guarantors of the integrity of the entire study and are responsible for experimental guidance and quality supervision. Both Xu J and Dai F participated in coordination and helped drafting the manuscript. All authors read and approved the final version of the manuscript.

ACKNOWLEDGMENTS

This study was supported by the Chongqing City Project, No. CSTC2012ggyyjs10015.

REFERENCES
[1]
SM Renner , TH Lim , WJ Kim , L Katolik , HS An , GB Andersson .
Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method.
[2]
DW Polly Jr , JR Orchowski , RG Ellenbogen .
Revision pedicle screws. Bigger, longer shims–what is best?.
[3]
BB Abshire , RF McLain , A Valdevit , HE Kambic .
Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out.
[4]
SD Cook , J Barbera , M Rubi , SL Salkeld , TS Whitecloud 3rd .
Lumbosacral fixation using expandable pedicle screws. An alternative in reoperation and osteoporosis.
[5]
PS Patel , DE Shepherd , DW Hukins .
The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models.
[6]
XM Zhuang , BS Yu , ZM Zheng , JF Zhang , WW Lu .
Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws.
[7]
L Shi , L Wang , Z Guo , ZX Wu , D Liu , MX Gao , et al.
A study of low elastic modulus expandable pedicle screws in osteoporotic sheep.
[8]
D Liu , L Shi , W Lei , MQ Wei , B Qu , SL Deng , et al.
Biomechanical Comparison of Expansive Pedicle Screw and Polymethylmethacrylate-augmented Pedicle Screw in Osteoporotic Synthetic Bone in Primary Implantation: An Experimental Study.
[9]
S Becker , A Chavanne , R Spitaler , K Kropik , N Aigner , M Ogon , et al.
Assessment of different screw augmentation techniques and screw designs in osteoporotic spines.
[10]
LE Hickerson , JR Owen , JS Wayne , HR Tuten .
Calcium Triglyceride Versus Polymethylmethacrylate Augmentation: A Biomechanical Analysis of Pullout Strength.
[11]
VA Stadelmann , E Bretton , A Terrier , P Procter , DP Pioletti .
Calcium phosphate cement augmentation of cancellous bone screws can compensate for the absence of cortical fixation.
[12]
BJ Moon , BY Cho , EY Choi , HY Zhang .
Polymethylmethacrylate-augmented screw fixation for stabilization of the osteoporotic spine: a three-year follow-up of 37 patients.
[13]
Y Liu , J Xu , D Sun , F Luo , Z Zhang , F Dai .
Biomechanical and finite element analyses of bone cement-injectable cannulated pedicle screw fixation in osteoporotic bone.
J Biomed Mater Res B Appl Biomater, 104 (2016), pp. 960-967
[14]
F Dai , Y Liu , F Zhang , D Sun , F Luo , Z Zhang , et al.
Surgical treatment of the osteoporotic spine with bone cement-injectable cannulated pedicle screw fixation: technical description and preliminary application in 43 patients.
[15]
JA Kanis , LJ Melton 3rd , C Christiansen , CC Johnston , N Khaltaev .
The diagnosis of osteoporosis.
[16]
BS Lonner , P Newton , R Betz , C Scharf , M O'Brien , P Sponseller , et al.
Operative management of Scheuermann's kyphosis in 78 patients: radiographic outcomes, complications, and technique.
[17]
Y Sun , H Wang , D Yang , N Zhang , S Yang , W Zhang , et al.
Characterization of radiographic features of consecutive lumbar spondylolisthesis.
[18]
GS Sapkas , SA Papadakis , DP Stathakopoulos , PJ Papagelopoulos , AC Badekas , JH Kaiser .
Evaluation of pedicle screw position in thoracic and lumbar spine fixation using plain radiographs and computed tomography. A prospective study of 35 patients.
[19]
JK Burkus , K Foley , RW Haid , JC LeHuec .
Surgical Interbody Research Group–radiographic assessment of interbody fusion devices: fusion criteria for anterior lumbar interbody surgery.
[20]
T Fujita , JP Kostuik , CB Huckell , AN Sieber .
Complications of spinal fusion in adult patients more than 60 years of age.
[21]
MR Zindrick , LL Wiltse , EH Widell , JC Thomas , WR Holland , BT Field , et al.
A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine.
Clin Orthop Relat Res, (1986), pp. 99-112
[22]
JD Thompson , JB Benjamin , JA Szivek .
Pullout strengths of cannulated and noncannulated cancellous bone screws.
Clin Orthop Relat Res, 341 (1997), pp. 241-249
[23]
YY Kim , WS Choi , KW Rhyu .
Assessment of pedicle screw pullout strength based on various screw designs and bone densities-an ex vivo biomechanical study.
[24]
RH Wittenberg , KS Lee , M Shea , AA White 3rd , WC Hayes .
Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength.
Clin Orthop Relat Res, 296 (1993), pp. 278-287
[25]
BA Pfeifer , MH Krag , C Johnson .
Repair of failed transpedicle screw fixation. A biomechanical study comparing polymethylmethacrylate, milled bone, and matchstick bone reconstruction.
[26]
PI Wuisman , M Van Dijk , H Staal , BJ Van Royen .
Augmentation of (pedicle) screws with calcium apatite cement in patients with severe progressive osteoporotic spinal deformities: an innovative technique.
[27]
MT Rohmiller , D Schwalm , RC Glattes , TG Elalayli , DM Spengler .
Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength.
[28]
AW Turner , RM Gillies , MJ Svehla , M Saito , WR Walsh .
Hydroxyapatite composite resin cement augmentation of pedicle screw fixation.
Clin Orthop Relat Res, (2003), pp. 253-261
[29]
SD Cook , SL Salkeld , T Stanley , A Faciane , SD Miller .
Biomechanical study of pedicle screw fixation in severely osteoporotic bone.
[30]
TM Shea , J Laun , SA Gonzalez-Blohm , JJ Doulgeris , WE Lee 3rd , K Aghayev , et al.
Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status.
Biomed Res Int, 2014 (2014),
[31]
LH Chen , CL Tai , DM Lee , PL Lai , YC Lee , CC Niu , et al.
Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: a comparative study between cannulated screws with cement injection and solid screws with cement pre-filling.
[32]
LH Chen , CL Tai , PL Lai , DM Lee , TT Tsai , TS Fu , et al.
Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping.
Clin Biomech, 24 (2009), pp. 613-618
[33]
BM Frankel , T Jones , C Wang .
Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation.
[34]
I Janssen , YM Ryang , J Gempt , S Bette , J Gerhardt , JS Kirschke , et al.
Risk of cement leakage and pulmonary embolism by bone cement-augmented pedicle screw fixation of the thoracolumbar spine.
[35]
SI Esses , BL Sachs , V Dreyzin .
Complications associated with the technique of pedicle screw fixation. A selected survey of ABS members.

No potential conflict of interest was reported.

Copyright © 2019. CLINICS
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos