metricas
covid
Buscar en
Clinics
Toda la web
Inicio Clinics The mutational repertoire of uterine sarcomas and carcinosarcomas in a Brazilian...
Información de la revista
Vol. 76.
(enero 2020)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
1967
Vol. 76.
(enero 2020)
ORIGINAL ARTICLE
Open Access
The mutational repertoire of uterine sarcomas and carcinosarcomas in a Brazilian cohort: A preliminary study
Visitas
1967
Leonardo Tomiatti da CostaI, Laura Gonzalez dos AnjosI, Luciane Tsukamoto KagoharaII, Giovana Tardin TorrezanIII, Claudia A. Andrade De PaulaIII, Edmund Chada BaracatI, Dirce Maria CarraroIII, Katia Candido CarvalhoI,
Autor para correspondencia
carvalhokc@gmail.com

Corresponding author.
I Laboratorio de Ginecologia Estrutural e Molecular, Disciplina de Ginecologia, Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
II School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
III Grupo de Biologia Molecular e Genomica, Centro A.C.Camargo, Sao Paulo, SP, BR
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (4)
Mostrar másMostrar menos
OBJECTIVES:

The present study aimed to contribute to the catalog of genetic mutations involved in the carcinogenic processes of uterine sarcomas (USs) and carcinosarcomas (UCSs), which may assist in the accurate diagnosis of, and selection of treatment regimens for, these conditions.

METHODS:

We performed gene-targeted next-generation sequencing (NGS) of 409 cancer-related genes in 15 US (7 uterine leiomyosarcoma [ULMS], 7 endometrial stromal sarcoma [ESS], 1 adenosarcoma [ADS]), 5 UCS, and 3 uterine leiomyoma (ULM) samples. Quality, frequency, and functional filters were applied to select putative somatic variants.

RESULTS:

Among the 23 samples evaluated in this study, 42 loss-of-function (LOF) mutations and 111 missense mutations were detected, with a total of 153 mutations. Among them, 66 mutations were observed in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. TP53 (48%), ATM (22%), and PIK3CA (17%) were the most frequently mutated genes. With respect to specific tumor subtypes, ESS showed mutations in the PDE4DIP, IGTA10, and DST genes, UCS exhibited mutations in ERBB4, and ULMS showed exclusive alterations in NOTCH2 and HER2. Mutations in the KMT2A gene were observed exclusively in ULM and ULMS. In silico pathway analyses demonstrated that many genes mutated in ULMS and ESS have functions associated with the cellular response to hypoxia and cellular response to peptide hormone stimulus. In UCS and ADS, genes with most alterations have functions associated with phosphatidylinositol kinase activity and glycerophospholipid metabolic process.

CONCLUSION:

This preliminary study observed pathogenic mutations in US and UCS samples. Further studies with a larger cohort and functional analyses will foster the development of a precision medicine-based approach for the treatment of US and UCS.

KEYWORDS:
Sarcoma
Carcinosarcoma
Mutation
DNA Sequence Analysis
Texto completo
INTRODUCTION

Sarcomas are rare heterogeneous tumors that affect the female genital tract and originate from tissues such as muscle, fat, bones, and fibrous tissue. Uterine sarcomas (USs) are the most commonly occurring gynecological sarcomas, representing 90% of the total cases (1). Based on their histological composition, uterine tumors with mesenchymal elements can be divided into 1) pure sarcomas (uterine leiomyosarcomas - ULMSs, endometrial stromal sarcomas - ESSs); 2) mixed epithelial and mesenchymal tumors (adenosarcomas - ADSs), and 3) carcinosarcomas - UCSs, a biphasic tumor composed of high-grade carcinomatous and sarcomatous components derived from transdifferentiation of carcinoma (2). Many studies have characterized UCS tumors as mixed USs; however, since 2014, they have been reclassified as endometrial carcinomas (ECs) that demonstrate metaplastic features (3,4). Despite their low prevalence, USs are associated with high rates of local recurrence, distant metastases, and poor prognosis, with two-year survival rates below 50% (1).

Several genetic alterations have been associated with USs and UCSs, with few alterations being associated with specific histological subtypes. For instance, ESSs can be divided into two types: low-grade ESS (LG-ESS) and high-grade ESS (HG-ESS), both characterized by recurrent chromosomal translocations. In LG-ESS, the most common translocation, t [7; 17] (p15; q21), is observed in almost 50% of the cases and results in the JAZF1-SUZ12 gene fusion (5). Ma et al. (6), revealed that the JAZF1-SUZ12 fusion protein destabilizes polycomb repressive complex 2 (PRC2), abolishes histone methyltransferase (HMT) activity, and subsequently activates genes normally repressed by PRC2. JAZF1-PHF1, EPC1-PHF1, PHF1-MEAF6, MBTD1-CXorf67, and JAZF1-BCORL1 are other less frequent fusion proteins observed in the patients with these tumors. HG-ESS exhibits a YWHAE-NUTM2 gene rearrangement (previously termed YWHAE-FAM22). Recently, molecular alterations in ZC3H7B-BCOR, BCOR-ITD, EPC1-BCOR, JAZF1-BCORL1, and BRD8-PHF1 have been identified. This histological subtype demonstrates more aggressive clinical behavior and worse prognosis (5,2). Many previous studies have investigated the ESS genome with a focus on genetic fusions (7–10). However, Choi et al. (11) demonstrated that fusions are not the only genetic alterations that occur during the development of ESS. Using whole-exome sequencing methods, the aforementioned study described mutations in PTEN, RB1, TP53, and CDH1. Despite the use of a very small number of ESS samples in this study (3 LG-ESS), it is a valuable contribution to the understanding of the pathogenesis of such tumors.

ULMSs are not characterized by specific chromosome translocations; however, they are associated with a complex karyotype with chromosomal gains and losses, such as deletion in chromosome 1. Most ULMSs express PDGFR-α, WT1, CYP19, and GNRH-R (12,13). Owing to gene alterations, the loss of function in the tumor suppressor genes, BRCA1 and MED12 as well as the loss of expression of the proteasome β1i subunit LMP2 have been associated with ULMS development (14). Additionally, The Cancer Genome Atlas (TCGA) Research Network (15) examined the molecular characterization of adult soft tissue sarcomas (STSs) and observed that ULMSs shared more similarities with extrauterine LMSs than that with other sarcomas. Although both tumors exhibit the same pattern of cell differentiation, their tumor environments are extremely diverse. This study included 53 cases of soft-tissue LMS (extrauterine) and 27 ULMS cases that were evaluated by whole-exome sequencing, demonstrating frequent alterations in TP53, RB1, ATRX, and MED12 (16).

Somatic mutations have also been described occurring at low frequency in the majority of the tyrosine kinase growth factor gene family and their targets, namely, v-raf murine sarcoma viral oncogene homolog B1 (BRAF), CDKN2A, epidermal growth factor receptor (EGFR), HER2, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), platelet-derived growth factor receptor (PDGFR), and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α (PI3KCA) during the development of UCS. In addition, mutations in TP53, PTEN, protein phosphatase 2 scaffold subunit alpha (PPP2R1A), F-box, and WD repeat domain containing 7 (FBXW7) have already been identified, which may contribute to the development of therapeutic alternatives including the use of the inhibitors of PARP, EZH2, cell-cycle, and PI3K pathway (14,17). Little information is available on how mutations contribute to ADS etiology; however, one study observed that DICER1 mutations are associated with the tumorigenic process in a small subset of such tumors (18).

Since these are rare tumors, only a few studies focusing on the definition of the mutational repertoire of the different histological types of rare sarcomas have been conducted thus far. Therefore, studies focusing on the mutational characterization of these tumors are of paramount importance and will contribute to the discovery of new biomarkers for precision medicine-based approaches in the treatment of such neoplasms. Herein, we investigated the mutational profile of the samples obtained from patients with ULMSs, UCSs, ESSs, and ADSs, using a commercial panel containing 409 cancer-associated genes involved in apoptosis, signaling, transcription regulation, inflammation response, and growth factors-associated pathway.

MATERIALS AND METHODSSample selection

In order to analyze differences in genetic mutations between different histological types of US, we initially selected 43 formalin-fixed and paraffin-embedded (FFPE) human samples including 14 ULMS, 12 ESS, 2 ADS, 12 UCS, and 3 ULM-non-cancerous tumor (as reference samples). All samples were obtained via surgical procedures performed between 2000 and 2012 at the Institute of Cancer of Sao Paulo (ICESP) and Clinics Hospital of the Faculty of Medicine, University of Sao Paulo (HCFMUSP). Tissues were stored at the molecular and structural gynecology laboratory (LIM-58) of the University of Sao Paulo Medical School (FMUSP).

This study was performed in accordance with the Declaration of Helsinki and was approved by the Research Ethics Committee of the FMUSP with protocol number 477/15. Patients’ medical records were revised and the following data were recorded: age at diagnosis, postmenopausal bleeding, adjuvant treatment, presence of metastasis or recurrence, and status.

DNA Isolation

Genomic DNA was extracted using the QIAamp DNA FFPE Tissue Kit obtained from QIAGEN® according to the manufacturer's instructions. DNA concentration, purity, and integrity were assessed by spectrophotometry (Nanodrop 2000, Thermo Fisher Scientific) and fluorometry (Qubit - Thermo Fisher Scientific), respectively.

Preparation of sequencing libraries and Next-Generation Sequencing (NGS)

Sequencing libraries were prepared using the Ion Torrent Ampliseq Comprehensive Cancer Panel - Catalog number: 4477685 (Thermo Fisher Scientific), which contains ∼16,000 primer pairs multiplexed into 4 pools. This commercial panel was designed to assess the mutational profile of 409 cancer driver genes and drug targets along with signaling cascades, apoptosis genes, DNA repair genes, transcription regulators, inflammatory response genes, and growth factor genes (Table S1). Prior to amplification, DNA was treated with the uracil-DNA glycosylase enzyme (Thermo Fisher Scientific) by adding 1 unit of enzyme per 50 ng of DNA and incubating for 15 min at 37 °C. This procedure was performed to remove DNA molecules containing uracil and decrease the number of artifactual variants in the sequencing (19). Libraries were then prepared using Ion AmpliSeqTM Library kit 2.0 protocols, with 10 ng of input DNA per pool, totaling 40 ng of DNA from each sample. The FuPa reagent was used to partially digest primer sequences and phosphorylate the amplicons. Next, sequencing adaptors and barcodes were ligated to the amplicon by the enzyme Ligase using the Ion Xpress™ Barcode Adapters kit (Thermo Fisher Scientific), which were then purified using magnetic beads (Agencourt® AMPure® XP Reagents, Beckman Coulter). Subsequently, emulsion PCR was performed using the Ion PI™ Hi-Q™ OT2 200 Kit (Thermo Fisher Scientific), followed by sequencing with Ion PITM Hi-QTM sequencing 200 and Ion PITM Chip.

Table S1.

Ion AmpliSeq Comprehensive Cancer Panel target gene list.

ABL1  CBL  EP300  GATA2  LAMP1  MYD88  PKHD1  SMARCA4  WHSC1 
ABL2  CCND1  EP400  GATA3  LCK  MYH11  PLAG1  SMARCB1  WRN 
ACVR2A  CCND2  EPHA3  GDNF  LIFR  MYH9  PLCG1  SMO  WT1 
ADAMTS20  CCNE1  EPHA7  GNA11  LPHN3  NBN  PLEKHG5  SMUG1  XPA 
AFF1  CD79A  EPHB1  GNAQ  POT1  NCOA1  PML  SOCS1  XPC 
AFF3  CD79B  EPHB4  GNAS  LPP  NCOA2  PMS1  SOX11  XPO1 
AKAP9  CDC73  EPHB6  GPR124  LRP1B  NCOA4  PMS2  SOX2  XRCC2 
AKT1  CDH1  ERBB2  GRM8  LTF  NF1  POU5F1  SRC  ZNF384 
AKT2  CDH11  ERBB3  GUCY1A2  LTK  NF2  PPARG  SSX1  ZNF521 
10  AKT3  CDH2  ERBB4  HCAR1  MAF  NFE2L2  PPP2R1A  STK11   
11  ALK  CDH20  ERCC1  HIF1A  MAFB  NFKB1  PRDM1  STK36   
12  APC  CDH5  ERCC2  HLF  MAGEA1  NFKB2  PRKAR1A  SUFU   
13  AR  CDK12  ERCC3  HNF1A  MAGI1  NIN  PRKDC  SYK   
14  ARID1A  CDK4  ERCC4  HOOK3  MALT1  NKX2-1  PSIP1  SYNE1   
15  ARID2  CDK6  ERCC5  HRAS  MAML2  NLRP1  PTCH1  TAF1   
16  ARNT  CDK8  ERG  HSP90AA1  MAP2K1  NOTCH1  PTEN  TAF1L   
17  ASXL1  CDKN2A  ESR1  HSP90AB1  MAP2K2  NOTCH2  PTGS2  TAL1   
18  ATF1  CDKN2B  ETS1  ICK  MAP2K4  NOTCH4  PTPN11  TBX22   
19  ATM  CDKN2C  ETV1  IDH1  MAP3K7  NPM1  PTPRD  TCF12   
20  ATR  CEBPA  ETV4  IDH2  MAPK1  NRAS  PTPRT  TCF3   
21  ATRX  CHEK1  EXT1  IGF1R  MAPK8  NSD1  RAD50  TCF7L1   
22  AURKA  CHEK2  EXT2  IGF2  MARK1  NTRK1  RAF1  TCF7L2   
23  AURKB  CIC  EZH2  IGF2R  MARK4  NTRK3  RALGDS  TCL1A   
24  AURKC  CKS1B  FAM123B  IKBKB  MBD1  NUMA1  RARA  TET1   
25  AXL  CMPK1  FANCA  IKBKE  MCL1  NUP214  RB1  TET2   
26  BAI3  COL1A1  FANCC  IKZF1  MDM2  NUP98  RECQL4  TFE3   
27  BAP1  CRBN  FANCD2  IL2  MDM4  PAK3  REL  TGFBR2   
28  BCL10  CREB1  FANCF  IL21R  MEN1  PALB2  RET  TGM7   
29  BCL11A  CREBBP  FANCG  IL6ST  MET  PARP1  RHOH  THBS1   
30  BCL11B  CRKL  FAS  IL7R  MITF  PAX3  RNASEL  TIMP3   
31  BCL2  CRTC1  FBXW7  ING4  MLH1  PAX5  RNF2  TLR4   
32  BCL2L1  CSF1R  FGFR1  IRF4  MLL  PAX7  RNF213  TLX1   
33  BCL2L2  CSMD3  FGFR2  IRS2  MLL2  PAX8  ROS1  TNFAIP3   
34  BCL3  CTNNA1  FGFR3  ITGA10  MLL3  PBRM1  RPS6KA2  TNFRSF14   
35  BCL6  CTNNB1  FGFR4  ITGA9  MLLT10  PBX1  RRM1  TNK2   
36  BCL9  CYLD  FH  ITGB2  MMP2  PDE4DIP  RUNX1  TOP1   
37  BCR  CYP2C19  FLCN  ITGB3  MN1  PDGFB  RUNX1T1  TP53   
38  BIRC2  CYP2D6  FLI1  JAK1  MPL  PDGFRA  SAMD9  TPR   
39  BIRC3  DAXX  FLT1  JAK2  MRE11A  PDGFRB  SBDS  TRIM24   
40  BIRC5  DCC  FLT3  JAK3  MSH2  PER1  SDHA  TRIM33   
41  BLM  DDB2  FLT4  JUN  MSH6  PGAP3  SDHB  TRIP11   
42  BLNK  DDIT3  FN1  KAT6A  MTOR  PHOX2B  SDHC  TRRAP   
43  BMPR1A  DDR2  FOXL2  KAT6B  MTR  PIK3C2B  SDHD  TSC1   
44  BRAF  DEK  FOXO1  KDM5C  MTRR  PIK3CA  SEPT9  TSC2   
45  BRD3  DICER1  FOXO3  KDM6A  MUC1  PIK3CB  SETD2  TSHR   
46  BRIP1  DNMT3A  FOXP1  KDR  MUTYH  PIK3CD  SF3B1  UBR5   
47  BTK  DPYD  FOXP4  KEAP1  MYB  PIK3CG  SGK1  UGT1A1   
48  BUB1B  DST  FZR1  KIT  MYC  PIK3R1  SH2D1A  USP9X   
49  CARD11  EGFR  G6PD  KLF6  MYCL1  PIK3R2  SMAD2  VHL   
50  CASC5  EML4  GATA1  KRAS  MYCN  PIM1  SMAD4  WAS   
Data Analysis

The results were analyzed using the Torrent Suite v5.0.5 software (Thermo Fisher Scientific). Sequence variants (SNVs and indels) were identified using the Torrent Variant Caller (Ion Torrent - Thermo Fisher Scientific) and compared to the GRCh37 / hg19 genome version. VCF files were analyzed using VarSeq v1.8 software (GoldenHelix) for variant annotation and prioritization. The variants were filtered based on the quality and frequency criteria: coverage (>100), genotype quality score cutoff (GQS>50), variant base in at least 5% of reads, variant base present in at least 2 reads in each direction, homopolymer-length error<5, absence of genetic variants in population databases (ExAC; NHLBI-ESP; 1000 Genomes Project) or minor allele frequency (MAF)≤0.01%.

Subsequently, variants were selected based on their effect on protein expression, with the following being considered: 1) variants described in the COSMIC database; 2) loss-of-function variants - Frameshift variants-nucleotide insertions/deletions, gain/loss of stop codons, splice site alterations); or 3) missense variants (in-frame insertions/deletions, amino acid exchange) predicted as possibly pathogenic in at least three of six prediction programs used (SIFT, PolyPhen, MutationTaster, MutationAssessor, FATHMM, FATHMM-MKL) and occurring in oncogenes or tumor suppressor genes in OncoMD database. Variants not previously described in the COSMIC database were visually inspected using the integrative genomics viewer (IGV) program to exclude sequencing artifacts.

Construction of genetic interaction networks was performed using Cytoscape platform version 3.7.0, which uses data from protein and genetic interactions, pathways, co-expression, co-localization, and protein domain similarity.

RESULTS

Initially, 40 US and UCS (14 ULMS, 12 ESS, 2 ADS, and 12 UCS) and 3 ULM samples were selected from the pathology department files; however, only 23 (7 ULMS, 7 ESS, 1 ADS, 5 UCS, and 3 ULM) remained until the end of NGS analyses. Some losses occurred while performing multiplex PCR reactions (AmpliSeq™), during which we observed a high degree of fragmented DNA and many genetic artifacts in several samples. These issues are expected since tissue processing for paraffin inclusion and long storage time causes damage to the DNA structure (integrity). The clinical and pathological features of 40 patients with US and UCS who were enrolled in this study are summarized in Table 1.

Table 1.

Clinical and pathological features of US and UCS patients (n=40).

Variables  Categories  US/UCS n (%) 
Age>50 years  33 (82) 
≤50 years  7 (18) 
N.A.  0 (0) 
Postmenopausal BleedingYes  22 (55) 
No  13 (33) 
N.A.  5 (12) 
Adjuvant TreatmentNo  8 (20) 
RT  19 (47) 
CT  8 (20) 
RT+CT  5 (13) 
N.A.  0 (0) 
Metastasis or RecurrenceYes  22 (55) 
No  14 (35) 
N.A.  4 (10) 
StatusAlive  11 (27) 
Death  23 (58) 
Loss of follow-up  6 (15) 
N.A.  0 (0) 

radiotherapy (RT); chemotherapy (CT); not available (NA); uterine sarcomas (US).

*ULM samples were not included owing to their benign characterization.

Among the 23 samples deemed suitable for the evaluation of sequencing data, homogeneity average was 73.2%, median base coverage was 1257X, and horizontal coverage was 84.3% corresponding to 100X. Based on the NGS data, we selected point mutations with possible impacts on the function of the protein encoded by the altered gene (missense, nonsense, splice-site mutations, loss of stop codons) and small insertions and deletions (indels). Total variants detected in each sample and filtered variants for the selection of somatic alterations of interest are presented in Table 2.

Table 2.

Total variants obtained after filtering performed to increase the specificity of NGS results (higher stringency).

  General (pre-filters)Selected Variants
Samples  Total  SNV  Insertions  Deletions  LOFs  Missense  Cosmic 
ESS 2  2347  2257  40  50 
ESS 3  1551  1473  31  47 
ESS 4  1249  1162  36  51 
ESS 5  1416  1324  36  56 
ESS 7  1494  1397  40  57 
ESS 9  1421  1343  35  43 
ESS 10  1440  1329  35  76 
UCS 2  1332  1223  47  62 
UCS 5  1362  1271  42  49  13 
UCS 9  1972  1884  42  46 
UCS 13  1234  1150  36  48 
UCS 19  1604  1516  33  55 
ULMS 38  746  678  43  25 
ULMS 39  1768  1688  34  46 
ULMS 40  1296  1193  42  61 
ULMS 45  2004  1921  36  47 
ULMS 52  2806  2746  23  37  11 
ULMS 50  2842  2651  77  114 
ULMS 59  2132  1968  76  88 
ADS 2  3521  3406  41  74  10 
ULM 119  1298  1201  37  60 
ULM 143  981  919  33  29 
ULM 152  1297  1237  25  35 

*Endometrial stromal sarcoma (ESS); Uterine carcinosarcoma (UCS); Uterine leiomyosarcoma (ULMS); Adenocarcinoma (ADS); Uterine leiomyoma (ULM).Single nucleotide variant (SNV); Loss of function (LOFs); Catalogue of Somatic Mutations in Cancer (COSMIC).

An average of 1700 alterations were identified per sample (ranging from 746 to 3521), with an average of 1606 single nucleotide variants (SNVs) (ranging from 678 to 3406), 40 insertions (ranging from 23 to 77), and 55 deletions (ranging from 25 to 114). To select relevant somatic variants, a first filter was applied focusing on the quality and frequencies of these alterations. A second filter, focusing on variant functions and effects, was used to select the alterations that would be most relevant in alterations of gene functions. Collectively, in 23 samples that were evaluated, 42 LOF mutations and 111 missense mutations were detected, with a total of 153 filtered mutations, among which 66 were found in the COSMIC database (Table 2).

Among the 409 genes included in the panel, mutations were detected in 94 distinct genes, with 30 genes demonstrating mutations in more than one sample and 64 genes showing mutations in a single sample. Table 3 presents the list of genes that were mutated in more than one sample of the cohort, along with the number of mutated samples and the histological types. TP53 (11/23 - 48%), ATM (5/23 - 22%), and PIK3CA (4/23 - 17%) were the most frequently mutated genes.

Table 3.

Gene mutations observed in more than one sample and histological subtypes.

Gene  Mutated samples n (%)  Histological Types (ULMS/ESS/UCS/ADS/ULM) 
TP53  11 (48%)  4 ULMS, 3 ESS, 4 UCS 
ATM  5 (22%)  2 ULMS, 2 ESS, 1 UCS 
PIK3CA  4 (17%)  1 ESS, 3 UCS 
KMT2D  3 (13%)  1 ULMS, 1 ESS, 1 UCS 
MTOR  3 (13%)  1 ESS, 1 UCS, 1 ULM 
JAK3  3 (13%)  1 ULMS, 1 ESS, 1 ULM 
APC  3 (13%)  1 ULMS, 2 ESS 
DICER1  3 (13%)  1 ESS, 2 UCS 
TRRAP  3 (13%)  2 UCS, 1 ADS 
TSC2  3 (13%)  2 ULMS, 1 ADS 
PDE4DIP  3 (13%)  3 ESS 
AR  2 (9%)  1 ESS, 1 UCS 
ATRX  2 (9%)  1 ULMS, 1 ESS 
CREBBP  2 (9%)  1 ULMS, 1 ESS 
DNMT3A  2 (9%)  1 UCS, 1 ADS 
EPHA7  2 (9%)  1 UCS, 1 ADS 
KAT6B  2 (9%)  1 UCS, 1 ADS 
KMT2A  2 (9%)  1 ULMS, 1 ULM 
MET  2 (9%)  1 UCS, 1 ULM 
MYB  2 (9%)  1 ULMS, 1 ESS 
NOTCH1  2 (9%)  1 ULMS, 1 UCS 
PRKDC  2 (9%)  1 UCS, 1 ADS 
SYNE1  2 (9%)  1 ULMS, 1 ESS 
NF1  2 (9%)  1 ESS, 1 UCS 
NOTCH2  2 (9%)  2 ULMS 
HER2  2 (9%)  2 ULMS 
ERBB4  2 (9%)  2 UCS 
DAXX  2 (9%)  1 ESS, 1 ADS 
ITGA10  2 (9%)  2 ESS 
DST  2 (9%)  2 ESS 

The Venn diagram (Figure 1) shows the shared and individual (specific) mutations of each malignant histological subtype evaluated (ULMS, ESS, UCS, and ADS). Three shared genes were observed (ATM, TP53, and KMT2D) among the ULMS, ESS, and UCS samples. Nineteen genes were shared between 2 types of tumors, and 68 genes were mutated in a single type. Among them, 6 genes were mutated in more than one sample of the same histological subtype, namely, PDE4DIP (3 ESS samples), ITGA10, and DST (2 ESS samples), NOTCH2, and HER2 (2 ULMS samples), and ERBB4 (2 UCS samples). Quantitatively, this analysis shows similarities in the mutational profiles of ULMS and ESS, with 6 mutated genes in common (6.7%) between both subtypes. In the genes JAK3, APC, ATRX, CREBBP, MYB, and SYNE1, most of the mutations were characterized as missense mutations; however, in the SYNE1 gene, the two mutations observed in ULMS and ESS samples were determined as LOF mutations (c.352C>T and c.8565G>A, respectively). In addition, mutations in the TRRAP, DNMT3A, EPHA7, KAT6B, and PRKDC genes indicate that UCS and ADS may exhibit molecular similarities.

Figure 1.

Venn diagram (Oliveros J.C, 2015) constructed using the genetic sequencing data obtained from all samples. The numbers represent shared and individual mutations for each assessed histological type.

(0.05MB).

Table 4 summarizes the genes with the most frequent alterations (mutations in 2 or more samples, or with 2 mutations in the same sample), the types of mutations, and their position. Alterations in the respective proteins are also indicated, along with the combined effect of these alterations (Missense or LOF) and DNA (c.), and protein (p.) nomenclatures. Their nomenclature can be used for database searches. The descriptions of the 153 potentially somatic variants are listed in Table S2. UCS5, ULMS52, ESS58107, and ADS2 samples demonstrated the highest number of mutations (UCS5 with 20 mutations in 19 genes; ULMS52 with 11 mutations in 10 genes; ESS58107 with 10 mutations in 10 genes, and ADS2 with 16 mutations in 16 genes). Samples with the lowest number of mutations were ULMS50b with 1 mutation in ALK, ESS4 with 2 mutations (ATM and CREBBP), and ULM119 (benign tissue) with 2 mutations (MET and PDGFB).

Table 4.

Most common mutations observed in the study, their chromosomal positions, effects, and nomenclature.

Sample  Chr:Pos  Gene  HGVS c.  HGVS p.  Effect 
UCS23:178921549  PIK3CA  c.1031T>C  p.Val344Ala  Missense 
6:94120318  EPHA7  c.733G>A  p.Ala245Thr  Missense 
7:116339356  MET  c.218T>A  p.Leu73Ter  LOF: stop - gained 
8:48776121  PRKDC  c.5586delT  p.Phe1862Leufs  LOF: frameshift 
17:7577547  TP53  c.734G>T  p.Gly245Val  Missense 
UCS51:11227575  MTOR  c.4254-1G>A  r.spl?  LOF: splice - acceptor 
3:178952085  PIK3CA  c.3140A>G  p.His1047Arg  Missense 
10:76735809  KAT6B  c.1714C>T  p.Arg572Cys  Missense 
11:108114777  ATM  c.594C>A  p.Cys198Ter  LOF: stop - gained 
14:95572101  DICER1  c.3007C>T  p.Arg1003Ter  LOF: stop - gained 
17:29588751  NF1  c.4600C>T  p.Arg1534Ter  LOF: stop - gained 
17:29665110  NF1  c.6772C>T  p.Arg2258Ter  LOF: stop - gained 
2:25469168  DNMT3A  c.1290T>G  p.Asn430Lys  Missense 
2:212587219  ERBB4  c.782A>C  p.Gln261Pro  Missense 
7:98513427  TRRAP  c.2281C>T  p.Arg761Trp  Missense 
X:66766207  AR  c.1219C>T  p.Arg407Cys  Missense 
UCS99:139391355  NOTCH1  c.6836C>T  p.Ala2279Val  Missense 
12:49444719  KMT2D  c.2747C>T  p.Pro916Leu  Missense 
17:7578442  TP53  c.488A>G  p.Tyr163Cys  Missense 
UCS133:178916854  PIK3CA  c.241G>A  p.Glu81Lys  Missense 
14:95574253  DICER1  c.2614G>A  p.Ala872Thr  Missense 
17:7577534  TP53  c.747G>T  p.Arg249Ser  Missense 
7:98609947  TRRAP  c.11549G>A  p.Arg3850His  Missense 
UCS192:212295800  ERBB4  c.2513G>A  p.Arg838Gln  Missense 
17:7577580  TP53  c.701A>G  p.Tyr234Cys  Missense 
ULMS381:120458122  NOTCH2  c.7223T>A  p.Leu2408His  Missense 
17:37864584  HER2  c.236A>C  p.Glu79Ala  Missense 
19:17937659  JAK3  c.3268G>A  p.Ala1090Thr  Missense 
ULMS39  17:7577545  TP53  c.736A>G  p.Met246Val  Missense 
ULMS4011:108139268  ATM  c.2770C>T  p.Arg924Trp  Missense 
17:7577120  TP53  c.818G>A  p.Arg273His  Missense 
17:37881117  HER2  c.2446C>T  p.Arg816Cys  Missense 
X:76891445  ATRX  c.4660A>T  p.Arg1554Ter  LOF: stop - gained 
ULMS4511:108160506  ATM  c.4414T>G  p.Leu1472Val  Missense 
17:7578290  TP53  c.560-1G>C  r.spl?  LOF: splice - acceptor 
16:2135281  TSC2  c.4620C>A  p.Tyr1540Ter  LOF: stop - gained 
ULMS521:120459251  NOTCH2  c.6094C>A  p.His2032Asn  Missense 
9:139400980  NOTCH1  c.4013C>T  p.Ala1338Val  Missense 
11:118377142  KMT2A  c.10535C>T  p.Pro3512Leu  Missense 
12:49416396  KMT2D  c.16315C>T  p.Arg5439Trp  Missense 
16:2130319  TSC2  c.3551C>T  p.Ala1184Val  Missense 
16:3779521  CREBBP  c.5527T>C  p.Cys1843Arg  Missense 
16:3790470  CREBBP  c.4063G>A  p.Gly1355Arg  Missense 
17:7574017  TP53  c.1010G>A  p.Arg337His  Missense 
ULMS595:112173857  APC  c.2566C>T  p.Arg856Cys  Missense 
6:135511289  MYB  c.331G>A  p.Gly111Ser  Missense 
ULMS596:135539101  MYB  c.2269C>T  p.Arg757Trp  Missense 
6:152832196  SYNE1  c.352C>T  p.Arg118Ter  LOF: stop - gained 
ULMS5920:57429026  GNAS  c.706G>A  p.Asp236Asn  Missense 
20:57480457  GNAS  c.2381A>C  p.Lys794Thr  Missense 
ESS2 (LG-ESS)6:152706896  SYNE1  c.8565G>A  p.Trp2855Ter  LOF: stop - gained 
11:108175463  ATM  c.5558A>T  p.Asp1853Val  Missense 
17:7577121  TP53  c.817C>T  p.Arg273Cys  Missense 
ESS2  17:7577139  TP53  c.799C>T  p.Arg267Trp  Missense 
ESS31:145015874  PDE4DIP  c.214C>T  p.Arg72Ter  LOF: stop - gained 
5:112154777  APC  c.1048T>C  p.Ser350Pro  Missense 
5:112162855  APC  c.1459G>A  p.Gly487Arg  Missense 
6:56328464  DST  c.16429C>T  p.Arg5477Trp  Missense 
12:49418436  KMT2D  c.15977T>C  p.Leu5326Pro  Missense 
17:7578176  TP53  c.672+1G>A  r.spl?  LOF: splice - donor 
17:29556250  NF1  c.2617C>T  p.Arg873Cys  Missense 
17:29677234  NF1  c.7355G>T  p.Arg2452Leu  Missense 
ESS411:108141990  ATM  c.2934delT  p.Leu979Cysfs  LOF: frameshift 
16:3820773  CREBBP  c.2678C>T  p.Ser893Leu  Missense 
ESS51:11217330  MTOR  c.4348T>G  p.Tyr1450Asp  Missense 
19:17937659  JAK3  c.3268G>A  p.Ala1090Thr  Missense 
ESS76:33287248  DAXX  c.1885G>A  p.Val629Ile  Missense 
14:95590677  DICER1  c.1232C>A  p.Ser411Ter  LOF: stop - gained 
ESS7  X:76939115  ATRX  c.1633C>G  p.Gln545Glu  Missense 
ESS91:144906139  PDE4DIP  c.2494delC  p.Gln832Argfs  LOF - frameshift 
1:145536012  ITGA10  c.2104G>A  p.Ala702Thr  Missense 
3:178936091  PIK3CA  c.1633G>A  p.Glu545Lys  Missense 
5:112175711  APC  c.4420G>A  p.Ala1474Thr  Missense 
ESS581071:145015874  PDE4DIP  c.214C>T  p.Arg72Ter  LOF: stop - gained 
1:145536012  ITGA10  c.2104G>A  p.Ala702Thr  Missense 
6:56328464  DST  c.16429C>T  p.Arg5477Trp  Missense 
6:135516944  MYB  c.1007C>T  p.Thr336Ile  Missense 
17:7578176  TP53  c.672+1G>A  r.spl?  LOF: splice - donor 
X:66863156  AR  c.1675A>T  p.Thr559Ser  Missense 
ADS22:25467477  DNMT3A  c.1599C>A  p.Tyr533Ter  LOF: stop - gained 
6:33288629  DAXX  c.959A>G  p.Gln320Arg  Missense 
6:93979315  EPHA7  c.1513C>A  p.Leu505Met  Missense 
7:98501128  TRRAP  c.1024G>T  p.Glu342Ter  LOF: stop - gained 
8:48711786  PRKDC  c.10279G>T  p.Glu3427Ter  LOF: stop - gained 
10:76781925  KAT6B  c.3308_3310delAAG  p.Glu1104del  LOF: inframe/del 
16:2138078  TSC2  c.5098G>T  p.Ala1700Ser  Missense 
ULM119  7:116403114  MET  c.2429A>C  p.His810Pro  Missense 
ULM1431:11307996  MTOR  c.995_996dupGG  p.Leu333Glyfs  LOF: frameshift 
19:17945696  JAK3  c.2164G>A  p.Val722Ile  Missense 
ULM152  11:118344893  KMT2A  c.3019G>T  p.Gly1007Cys  Missense 
Table S2.

Description of 153 potential somatic variants selected in 23 samples of uterine tumors.

Sample  Chr:Pos  Gene  HGVS c.  HGVS p.  Effect 
UCS23:178921549  PIK3CA  c.1031T>C  p.Val344Ala  Missense 
6:94120318  EPHA7  c.733G>A  p.Ala245Thr  Missense 
7:116339356  MET  c.218T>A  p.Leu73Ter  LOF: stop - gained 
8:48776121  PRKDC  c.5586delT  p.Phe1862Leufs  LOF: frameshift 
15:99500303  IGF1R  c.3736C>T  p.Arg1246Cys  Missense 
17:7577547  TP53  c.734G>T  p.Gly245Val  Missense 
22:33253291  TIMP3  c.260delC  p.Glu88Argfs  LOF: frameshift 
UCS51:11227575  MTOR  c.4254-1G>A  r.spl?  LOF: splice - acceptor 
1:27105553  ARID1A  c.5164C>T  p.Arg1722Ter  LOF: stop - gained 
1:65310574  JAK1  c.2116-2A>G  r.spl?  LOF: splice - acceptor 
3:178952085  PIK3CA  c.3140A>G  p.His1047Arg  Missense 
10:76735809  KAT6B  c.1714C>T  p.Arg572Cys  Missense 
10:97969609  BLNK  c.731C>T  p.Pro244Leu  Missense 
11:108114777  ATM  c.594C>A  p.Cys198Ter  LOF: stop - gained 
14:95572101  DICER1  c.3007C>T  p.Arg1003Ter  LOF: stop - gained 
17:29588751  NF1  c.4600C>T  p.Arg1534Ter  LOF: stop - gained 
17:29665110  NF1  c.6772C>T  p.Arg2258Ter  LOF: stop - gained 
19:45260400  BCL3  c.646C>T  p.Arg216Cys  Missense 
1:47685756  TAL1  c.632G>A  p.Arg211His  Missense 
2:25469168  DNMT3A  c.1290T>G  p.Asn430Lys  Missense 
2:212587219  ERBB4  c.782A>C  p.Gln261Pro  Missense 
7:98513427  TRRAP  c.2281C>T  p.Arg761Trp  Missense 
9:37015073  PAX5  c.331G>A  p.Ala111Thr  Missense 
19:11098401  SMARCA4  c.919C>T  p.Pro307Ser  Missense 
20:36030940  SRC  c.1219G>A  p.Asp407Asn  Missense 
X:44942716  KDM6A  c.3452A>G  p.Gln1151Arg  Missense 
X:66766207  AR  c.1219C>T  p.Arg407Cys  Missense 
UCS99:139391355  NOTCH1  c.6836C>T  p.Ala2279Val  Missense 
10:123298226  FGFR2  c.628C>T  p.Arg210Ter  LOF: stop - gained 
12:49444719  KMT2D  c.2747C>T  p.Pro916Leu  Missense 
15:40916649  KNL1  c.4265G>A  p.Arg1422Gln  Missense 
17:7578442  TP53  c.488A>G  p.Tyr163Cys  Missense 
3:52440867  BAP1  c.637C>T  p.Arg213Cys  Missense 
21:39755729  ERG  c.1057G>A  p.Glu353Lys  Missense 
UCS133:178916854  PIK3CA  c.241G>A  p.Glu81Lys  Missense 
11:71726283  NUMA1  c.2266G>T  p.Glu756Ter  LOF: stop - gained 
13:29001422  FLT1  c.1310C>T  p.Ser437Leu  Missense 
14:95574253  DICER1  c.2614G>A  p.Ala872Thr  Missense 
17:7577534  TP53  c.747G>T  p.Arg249Ser  Missense 
5:176636902  NSD1  c.1502A>G  p.Lys501Arg  Missense 
7:98609947  TRRAP  c.11549G>A  p.Arg3850His  Missense 
UCS192:212295800  ERBB4  c.2513G>A  p.Arg838Gln  Missense 
9:5126715  JAK2  c.3323A>G  p.Asn1108Ser  Missense 
17:7577580  TP53  c.701A>G  p.Tyr234Cys  Missense 
17:37829120  PGAP3  c.900-1G>A  r.spl?  LOF: splice - acceptor 
ULMS381:120458122  NOTCH2  c.7223T>A  p.Leu2408His  Missense 
6:51914991  PKHD1  c.2243C>T  p.Ala748Val  Missense 
16:23646942  PALB2  c.925A>G  p.Ile309Val  Missense 
17:5462805  NLRP1  c.1211G>A  p.Arg404Gln  Missense 
17:37864584  ERBB2  c.236A>C  p.Glu79Ala  Missense 
3:65425588  MAGI1  c.1234_1236delCAG  p.Gln421del  Inframe - deletion 
19:17937659  JAK3  c.3268G>A  p.Ala1090Thr  Missense 
ULMS393:188327501  LPP  c.982C>T  p.Arg328Trp  Missense 
7:142562071  EPHB6  c.513_515delCTC  p.Ser176del  LOF: disruptive - inframe - del 
17:7577545  TP53  c.736A>G  p.Met246Val  Missense 
ULMS40  2:100218031  AFF3  c.1310_1312delGCA  p.Ser444del  LOF: disruptive - inframe - del 
ULMS4011:108139268  ATM  c.2770C>T  p.Arg924Trp  Missense 
17:7577120  TP53  c.818G>A  p.Arg273His  Missense 
17:37881117  ERBB2  c.2446C>T  p.Arg816Cys  Missense 
X:76891445  ATRX  c.4660A>T  p.Arg1554Ter  LOF: stop - gained 
ULMS453:128204775  GATA2  c.666G>C  p.Lys222Asn  Missense 
11:108160506  ATM  c.4414T>G  p.Leu1472Val  Missense 
12:121437187  HNF1A  c.1618A>G  p.Lys540Glu  Missense 
17:7578290  TP53  c.560-1G>C  r.spl?  LOF: splice - acceptor 
16:2135281  TSC2  c.4620C>A  p.Tyr1540Ter  LOF: stop - gained 
ULMS50b  2:29432740  ALK  c.3748A>G  p.Ile1250Val  Missense 
ULMS521:6528318  PLEKHG5  c.2815C>T  p.Arg939Cys  Missense 
1:120459251  NOTCH2  c.6094C>A  p.His2032Asn  Missense 
9:139400980  NOTCH1  c.4013C>T  p.Ala1338Val  Missense 
11:118377142  KMT2A  c.10535C>T  p.Pro3512Leu  Missense 
12:49416396  KMT2D  c.16315C>T  p.Arg5439Trp  Missense 
13:26978093  CDK8  c.1270C>T  p.Arg424Cys  Missense 
16:2130319  TSC2  c.3551C>T  p.Ala1184Val  Missense 
16:3779521  CREBBP  c.5527T>C  p.Cys1843Arg  Missense 
16:3790470  CREBBP  c.4063G>A  p.Gly1355Arg  Missense 
17:7574017  TP53  c.1010G>A  p.Arg337His  Missense 
  22:36678790  MYH9  c.5807G>A  p.Arg1936Gln  Missense 
ULMS595:112173857  APC  c.2566C>T  p.Arg856Cys  Missense 
6:135511289  MYB  c.331G>A  p.Gly111Ser  Missense 
6:135539101  MYB  c.2269C>T  p.Arg757Trp  Missense 
6:152832196  SYNE1  c.352C>T  p.Arg118Ter  LOF: stop - gained 
7:2946463  CARD11  c.3274C>T  p.Arg1092Ter  LOF: stop - gained 
18:22806393  ZNF521  c.1489C>T  p.Arg497Ter  LOF: stop - gained 
18:47803035  MBD1  c.472C>T  p.Arg158Ter  LOF: stop - gained 
20:57429026  GNAS  c.706G>A  p.Asp236Asn  Missense 
20:57480457  GNAS  c.2381A>C  p.Lys794Thr  Missense 
22:30069262  NF2  c.1127G>A  p.Arg376Gln  Missense 
ESS2 (LG-ESS)6:152706896  SYNE1  c.8565G>A  p.Trp2855Ter  LOF: stop - gained 
11:108175463  ATM  c.5558A>T  p.Asp1853Val  Missense 
14:81610269  TSHR  c.1867G>T  p.Ala623Ser  Missense 
17:7577121  TP53  c.817C>T  p.Arg273Cys  Missense 
17:7577139  TP53  c.799C>T  p.Arg267Trp  Missense 
19:3119273  GNA11  c.805G>A  p.Val269Ile  Missense 
22:41553308  EP300  c.3397C>T  p.Arg1133Trp  Missense 
ESS31:145015874  PDE4DIP  c.214C>T  p.Arg72Ter  LOF: stop - gained 
5:112154777  APC  c.1048T>C  p.Ser350Pro  Missense 
5:112162855  APC  c.1459G>A  p.Gly487Arg  Missense 
6:56328464  DST  c.16429C>T  p.Arg5477Trp  Missense 
12:49418436  KMT2D  c.15977T>C  p.Leu5326Pro  Missense 
17:7578176  TP53  c.672+1G>A  r.spl?  LOF: splice - donor 
17:29556250  NF1  c.2617C>T  p.Arg873Cys  Missense 
17:29677234  NF1  c.7355G>T  p.Arg2452Leu  Missense 
ESS411:108141990  ATM  c.2934delT  p.Leu979Cysfs  LOF: frameshift 
16:3820773  CREBBP  c.2678C>T  p.Ser893Leu  Missense 
ESS51:11217330  MTOR  c.4348T>G  p.Tyr1450Asp  Missense 
14:51227050  NIN  c.1924G>A  p.Glu642Lys  Missense 
19:17937659  JAK3  c.3268G>A  p.Ala1090Thr  Missense 
20:41101170  PTPRT  c.1186G>A  p.Val396Ile  Missense 
ESS76:33287248  DAXX  c.1885G>A  p.Val629Ile  Missense 
6:117710646  ROS1  c.1626delT  p.Phe542Leufs  LOF: frameshift 
14:95590677  DICER1  c.1232C>A  p.Ser411Ter  LOF: stop - gained 
ESS7  X:76939115  ATRX  c.1633C>G  p.Gln545Glu  Missense 
ESS91:144906139  PDE4DIP  c.2494delC  p.Gln832Argfs  LOF: frameshift 
1:145536012  ITGA10  c.2104G>A  p.Ala702Thr  Missense 
3:178936091  PIK3CA  c.1633G>A  p.Glu545Lys  Missense 
4:55564641  KIT  c.529C>T  p.Arg177Cys  Missense 
4:55976709  KDR  c.1116G>C  p.Glu372Asp  Missense 
5:112175711  APC  c.4420G>A  p.Ala1474Thr  Missense 
5:180048651  FLT4  c.1911C>G  p.Ser637Arg  Missense 
ESS581071:145015874  PDE4DIP  c.214C>T  p.Arg72Ter  LOF: stop - gained 
1:145536012  ITGA10  c.2104G>A  p.Ala702Thr  Missense 
2:142567932  LRP1B  c.121G>A  p.Asp41Asn  Missense 
4:153332477  FBXW7  c.479C>T  p.Pro160Leu  Missense 
6:56328464  DST  c.16429C>T  p.Arg5477Trp  Missense 
6:135516944  MYB  c.1007C>T  p.Thr336Ile  Missense 
7:91570414  AKAP9  c.1A>G  p.Met1?  LOF: initiator - codon 
17:7578176  TP53  c.672+1G>A  r.spl?  LOF: splice - donor 
X:41056743  USP9X  c.4360delG  p.Gly1454Glufs  LOF: frameshift 
X:66863156  AR  c.1675A>T  p.Thr559Ser  Missense 
ADS21:162748436  DDR2  c.2350T>C  p.Cys784Arg  Missense 
2:25467477  DNMT3A  c.1599C>A  p.Tyr533Ter  LOF: stop - gained 
2:209110123  IDH1  c.440C>A  p.Pro147His  Missense 
3:38182306  MYD88  c.766T>C  p.Phe256Leu  Missense 
5:131927073  RAD50  c.1610delA  p.Met538Trpfs  LOF: frameshift 
6:33288629  DAXX  c.959A>G  p.Gln320Arg  Missense 
6:93979315  EPHA7  c.1513C>A  p.Leu505Met  Missense 
7:98501128  TRRAP  c.1024G>T  p.Glu342Ter  LOF: stop - gained 
8:48711786  PRKDC  c.10279G>T  p.Glu3427Ter  LOF: stop - gained 
9:98209391  PTCH1  c.4147C>A  p.Pro1383Thr  Missense 
10:76781925  KAT6B  c.3308_3310delAAG  p.Glu1104del  LOF: disruptive - inframe - del 
11:106558436  GUCY1A2  c.2131G>T  p.Glu711Ter  LOF: stop - gained 
15:90630454  IDH2  c.857A>G  p.Glu286Gly  Missense 
16:2138078  TSC2  c.5098G>T  p.Ala1700Ser  Missense 
22:29121048  CHEK2  c.638T>C  p.Val213Ala  Missense 
X:53223847  KDM5C  c.3512A>G  p.Lys1171Arg  Missense 
ULM1197:116403114  MET  c.2429A>C  p.His810Pro  Missense 
22:39621795  PDGFB  c.659dupA  p.Lys222Glnfs  LOF: frameshift 
ULM1431:11307996  MTOR  c.995_996dupGG  p.Leu333Glyfs  LOF: frameshift 
9:32634260  TAF1L  c.1318A>G  p.Ile440Val  Missense 
19:17945696  JAK3  c.2164G>A  p.Val722Ile  Missense 
ULM1528:41791030  KAT6A  c.4708G>A  p.Asp1570Asn  Missense 
11:118344893  KMT2A  c.3019G>T  p.Gly1007Cys  Missense 
19:1207176  STK11  c.263_264insC  p.Asn90Glnfs  LOF: frameshift 

Based on the data described in Table 4, we selected genes with more than three mutations in our cohort to submit to the OncoPrinter visualization tool (cBioPortal - http://www.cbioportal.org/). Figure 2 shows the percentage of patients demonstrating mutations in each gene, distribution, and the types of mutations observed in each sample. The highest frequency of gene mutations was observed in TP53 (48%) with the highest frequency of missense-type mutations (3 ULMS, 1 ESS, and 4 UCS samples). ATM mutations were observed in 22% of the samples, with 3 missense-type mutations (2 ULMS and 1 ESS) and 2 LOF-type mutations (1 ESS and 1 UCS). PIK3CA appeared to be the third most mutated gene (17%) present in 3 UCS samples, with most of the mutations determined as the missense-type. APC, MTOR, DICER1, TRRAP, KMT2D, TSC2, PDE4DIP, and JAK3 showed a 13% mutational frequency. LOF mutations in PDE4DIP was found exclusively/specificaly in the ESS samples. NF1, CREBBP, and MYB demonstrated a 9% mutational frequency. Missense mutations in CREBBP and MYB were associated with ULMS and ESS (4 mutations in ULMS and 2 in ESS).

Figure 2.

Distribution of mutations in samples and their biological effects. The figure was constructed using the OncoPrinter from cBioPortal for Cancer Genomics database (http://www.cbioportal.org/). Each gray rectangle represents a sample according to the sequence indicated at the top. Genes with the highest frequency of alterations are shown. Captions for each type of alteration (Loss of function - Black Square; Missense - Green Square; Two alterations in the same gene - vertical line [modified by authors]; No alteration - gray rectangle) are indicated.

(0.08MB).

Since uterine sarcomas are histologically classified into two primary subtypes, we used the same classification to study the association of the mutated genes with pure sarcomas (ULMS - ESS) and mixed tumors (UCS - ADS). Figure 3 shows the association of the mutated genes in the group of tumors classified as pure (ULMS and ESS). According to the Cytoscape platform (20), many genes demonstrating mutations in these histological subtypes exhibit functions associated with the cellular response to hypoxia (MTOR, PDK1, MDM2, TP53, CREBBP, NOTCH1, and HIF1A) and peptide hormone stimulus (EIF4EBP1, RPTOR, TSC2, TSC1, MTOR, JAK3, ADCY6, PIK3CA, GNAS, and ATP6V1D).

Figure 3.

Interaction network of mutated genes in the histological types of pure sarcomas (ULMS - ESS) prepared by the Cytoscape 3.7.0 platform. The network shows patterns of predicted interaction (orange); physical interactions (red); co-expression (violet); shared proteins domains (yellow); co-localization (blue), and genetic interaction (green). Red-labeled genes have a function associated with the cellular response to hypoxia and yellow-labeled genes have a function associated with the cellular response to the peptide hormone stimulus. The genes that were inserted to perform the analysis are shown with cross-hatched circles of a uniform size. The relevant genes are shown with solid circles whose size is proportional to the number of interactions. The reported link weights are indicated visually by line thickness.

(0.06MB).

Although UCS is no longer classified as uterine sarcoma but as metaplastic carcinoma, we included this tumor group in the analysis shown in Figure 4. Here, we associated UCS - ADS owing to their mixed histologies (epithelial and mesenchymal components) and also because many retrospective studies on the US still include UCS in their available samples. According to the Cytoscape platform (20), many mutated genes in these tumors have functions associated with phosphatidylinositol kinase activity (PI4K2A, PIK3CA, PIK3CB, ATM, PI4KB, PIK3CG, PIK3C2B, PI4KA, PIK3C2A, PIK3C3, PIK3C2G, and PIK3CD) and glycerophospholipid metabolic process (PI4K2A, PIK3CA, PIK3CB, ATM, PI4KB, PIK3CG, PIK3C2B, PI4KA, PIK3C2A, PIK3C3, PIK3C2G, PIK3CD, PI4K2B, and SMG1).

Figure 4.

Interaction network of mutated genes in mixed tumors (UCS - ADS) prepared by the Cytoscape 3.7.0 platform. The network shows patterns of predicted interaction (orange); physical interactions (red); co-expression (violet); shared proteins domains (yellow); co-localization (blue) and genetic interaction (green). Red-labeled genes have a function associated with phosphatidylinositol kinase activity and blue-labeled genes have a function associated with the glycerophospholipid metabolic process. The genes that were inserted to perform the analysis are shown with cross-hatched circles of a uniform size. The relevant genes are shown with solid circles whose size is proportional to the number of interactions. The reported link weights are indicated visually by line thickness.

(0.07MB).

Collectively, our results indicate that despite the molecular heterogeneity demonstrated by USs and UCSs, they share similarities in their mutational profiles. In addition, genetic interaction networks indicate that alterations in functions associated with hypoxia, response to peptide hormone stimulus in ULMSs and ESSs, and phosphatidylinositol kinase activity and glycerophospholipid metabolic process in UCS and ADS can influence the carcinogenic process of these tumors. Considering that NGS technology can provide a reliable molecular portrait of neoplasms quickly and cost-effectively (21), these results open new avenues for research and consequently, may positively impact the clinical management of patients with such tumors.

DISCUSSION

In this study, we performed a mutational screening of the samples collected from patients with USs and UCSs. We employed a panel of 409 genes for the screening. Initially, we focused on the mutated genes shared among more than one histological subtype of US. We initiated our analyses with 40 samples, but owing to the quality of the FFPE material, certain losses reduced the number of samples to 23. Considering the published reports on sarcomas, the number of samples was sufficient for this type of population mutational screening. In UCS and ESS samples, we identified mutations in genes that demonstrated alterations in previous studies conducted for examining other tumors, such as PIK3CA, DICER1, AR, and NF (22). Although the role of these genes is known in different cancers, their role in the tumorigenesis of USs and USCs is not fully understood.

The PIK3CA gene encodes the p110α protein, the catalytic subunit of PI3K, which controls the growth, division, survival, movement, and structure of cells. Many studies have demonstrated the importance of PIK3CA mutation in mediating tumorigenesis via increased PI3K/AKT/mTOR signaling (23,24). While investigating druggable molecular targets in uterine sarcomas, Cuppens et. al (25) identified PI3K/MTOR as a potential target in 26% of cases, which were primarily ULMS, HG-ESS, and undifferentiated uterine sarcomas. Here, we included eight samples of ESS. Seven of these were characterized as HG-ESS, consistent with the molecular findings described in previous reports published for these tumors. DICER1 is critical for the regulation of expression of several miRNAs. The DICER1 gene is highly conserved among various species, indicating that mutations may compromise its function and might be involved in the onset of tumors (26). Previous reports published by our group (2,27) demonstrated the regulation of microRNAs associated with several oncogenic pathways, including DICER1. Mutations in NF1 have already been demonstrated in soft-tissue sarcomas (myxofibrosarcomas and pleomorphic liposarcomas) (28). The expression of the androgen receptor (AR) seems to be associated with a better prognosis in patients with ESS. AR expression is higher in pre-malignant lesions and low-grade tumors (LG-ESS) (29). These findings may explain why AR expression is low in ULMS, which is an extremely aggressive tumor (30). However, the effects of the mutations observed in this gene need to be further investigated for US.

It is important to note that NOTCH1 was the unique gene that shared mutations in the UCS and ULMS. Similarly, mutations in the DAXX gene have also been observed in the cases of ESS/ADS and ULMS/ADS, which share mutations in TSC2. Thus, our results suggest that besides exhibiting a similar tumor microenvironment, USs and UCSs also share genetic alterations. This observation is relevant to the understanding of the onset and evolution of these tumors. Furthermore, ULMS cases originating from ULMs have been reported; however, this hypothesis has not been proven yet (31,32). Our study showed that mutations in KMT2A were exclusively observed in ULMS and ULM. The c.3019G>T variant appears to be related to the Wiedemann-Steiner syndrome and Kabuki syndrome (33,34).

We attempted to identify specific genes for each type of tumor, establishing individual signatures. Despite the heterogeneity, we were able to identify six specific genes for three of the histological types evaluated in this study. In ESS samples, we observed variants in the PDE4DIP (c.214C>T and c.2494delC), ITGA10 (c.2104G>A), and DST (c.16429C>T) genes. The variant PDE4DIP c.214C>T is described in the COSMIC database (35) and was first observed in papillary thyroid carcinoma. Mutations in this gene are described in several tumors, such as breast cancer as well as the cancers of the endometrium, cervix, ovaries, and urinary tract. The protein encoded by the PDE4DIP gene is responsible for binding 4D phosphodiesterase to the Golgi complex. Alterations in this gene may cause a myeloproliferative disorder associated with eosinophilia (36). Despite the information available in databases and the literature, its typical role in tumor biology remains unknown.

In UCS, we observed two variants of ERBB4 (c.782A>C and c.2513G>A). The variant ERBB4 c.2513G>A is described in the COSMIC database (35) as pathogenic (score 0.99) and has already been observed in hormone receptor-positive breast cancer, large bowel adenocarcinoma, malignant melanoma, and gastroesophageal junction adenocarcinoma. The role of ERBB4 as a tumor progression factor is not fully elucidated. However, this gene is known to be overexpressed and/or mutated in several solid tumors (37). The monoclonal antibody ERBB4 therapy is effective in breast, lung, and prostate cancer cells in vitro and in vivo (38). Specific and detailed studies may demonstrate new opportunities for the development of therapies targeting these tumors.

Mutations in NOTCH2 and HER2 have also been observed exclusively in ULMS. All variants are described in the COSMIC database (35). c.6094C>A mutation of NOTCH2 is considered to be pathogenic (score 0.97) and is described in diffuse large B cell lymphoma and pancreatic ductal adenocarcinoma (PDAC). The NOTCH2 c.7223T>A variant is also pathogenic (score 0.85) and has already been described in meningioma, a primary non-malignant CNS tumor (39). HER2 also presented two pathogenic variants in ULMS: c.236A>C and c.2446C>T. The c.236A>C variant has already been described in meningothelial meningioma and is associated with IL-6 signaling pathways and DNA damage response. The c.2446C>T mutation has been observed in large bowel adenocarcinoma and transitional cell carcinoma of the urinary system. Persistent NOTCH2 signaling is largely associated with poor clinical prognosis. In addition, it increases resistance to chemotherapy and radiotherapy, making these cancers less sensitive to treatment (40). HER2 mutations have emerged as therapeutic targets for a variety of tumors. Anti- HER2 therapies are effective against breast, lung, and cervical cancers (41).

In this study, we were able to identify several mutations that contribute to a better understanding of the biology of USs and UCSs. Even with the limitations associated with rare tumors, we identified genetic alterations that might act as potential target markers for precision medicine-based approaches upon validation in larger cohorts. To date, there is no precise preoperative diagnostic test for these tumors. Although rare, such tumors are very aggressive and associated with a poor prognosis. Thus, even with small cohorts, the molecular profiling of USs and UCSs is extremely important to identify the changes driving the development of these tumors and provide powerful tools for diagnostic and prognostic tests as well as adequate treatment alternatives. Our study is the first DNA-sequencing study to investigate all histological types of USs and UCSs together and is an insightful contribution for defining the mutational repertoire of these rare tumors.

CONCLUSIONS

Using a platform to profile mutations in a panel of 409 genes, we identified that TP53, ATM, PIK3CA, APC, MTOR, DICER1, TRRAP, KMT2D, TSC2, PDE4DIP, and JAK3 are the most frequently mutated genes in USs and UCSs. Considering common mutations among the different tumor types being evaluated, the TP53 (4 UCS/4 ULMS/3 ESS), ATM (2 ULMS/2 ESS/1 UCS), and KMT2D (1 UCS/1 ULMS/1 ESS) genes could be indicators of similarities in neoplastic progression. As specific signature genes, ESS exhibited mutations in the PDE4DIP, IGTA10, and DST genes. UCS showed mutations in the ERBB4 gene, and ULMS demonstrated exclusive alterations in the NOTCH2 and HER2 genes. Mutations in the KMT2A gene were observed exclusively in ULM and ULMS samples, and therefore, are potentially involved in the malignant transformation process. According to the Cytoscape platform, many genes that were mutated in the ULMS and ESS samples exhibit functions associated with the cellular response to hypoxia and peptide hormone stimulus. In UCS and ADS, most altered genes exhibit functions associated with phosphatidylinositol kinase activity and glycerophospholipid metabolic process. More studies should be conducted with a larger number of samples and functional analyses. However, the current screening contributes to the characterization of the complex genetic profile of USs and USCs.

AUTHOR CONTRIBUTIONS

Da Costa LT and Dos Anjos LG were responsible for study conceptualization, literature organization and paper elaboration. Kagohara LT collaborated in analyses of data, manuscripts and reviews. Torrezan GT and De Paula CAA contributed to the study execution. Baracat EC and Carraro DM provided intellectual support. Carvalho KC analyzed the literature, critically reviewed the manuscript, supervised the research and developed the original idea.

ACKNOWLEDGMENTS

The research received financial support from Fundacão de Amparo è Pesquisa do Estado de São Paulo - FAPESP (process numbers: 2016/03163-6 and 2019/01109-2).

Appendix

Table S1.

Ion AmpliSeq Comprehensive Cancer Panel target gene list.

ABL1  CBL  EP300  GATA2  LAMP1  MYD88  PKHD1  SMARCA4  WHSC1 
ABL2  CCND1  EP400  GATA3  LCK  MYH11  PLAG1  SMARCB1  WRN 
ACVR2A  CCND2  EPHA3  GDNF  LIFR  MYH9  PLCG1  SMO  WT1 
ADAMTS20  CCNE1  EPHA7  GNA11  LPHN3  NBN  PLEKHG5  SMUG1  XPA 
AFF1  CD79A  EPHB1  GNAQ  POT1  NCOA1  PML  SOCS1  XPC 
AFF3  CD79B  EPHB4  GNAS  LPP  NCOA2  PMS1  SOX11  XPO1 
AKAP9  CDC73  EPHB6  GPR124  LRP1B  NCOA4  PMS2  SOX2  XRCC2 
AKT1  CDH1  ERBB2  GRM8  LTF  NF1  POU5F1  SRC  ZNF384 
AKT2  CDH11  ERBB3  GUCY1A2  LTK  NF2  PPARG  SSX1  ZNF521 
10  AKT3  CDH2  ERBB4  HCAR1  MAF  NFE2L2  PPP2R1A  STK11   
11  ALK  CDH20  ERCC1  HIF1A  MAFB  NFKB1  PRDM1  STK36   
12  APC  CDH5  ERCC2  HLF  MAGEA1  NFKB2  PRKAR1A  SUFU   
13  AR  CDK12  ERCC3  HNF1A  MAGI1  NIN  PRKDC  SYK   
14  ARID1A  CDK4  ERCC4  HOOK3  MALT1  NKX2-1  PSIP1  SYNE1   
15  ARID2  CDK6  ERCC5  HRAS  MAML2  NLRP1  PTCH1  TAF1   
16  ARNT  CDK8  ERG  HSP90AA1  MAP2K1  NOTCH1  PTEN  TAF1L   
17  ASXL1  CDKN2A  ESR1  HSP90AB1  MAP2K2  NOTCH2  PTGS2  TAL1   
18  ATF1  CDKN2B  ETS1  ICK  MAP2K4  NOTCH4  PTPN11  TBX22   
19  ATM  CDKN2C  ETV1  IDH1  MAP3K7  NPM1  PTPRD  TCF12   
20  ATR  CEBPA  ETV4  IDH2  MAPK1  NRAS  PTPRT  TCF3   
21  ATRX  CHEK1  EXT1  IGF1R  MAPK8  NSD1  RAD50  TCF7L1   
22  AURKA  CHEK2  EXT2  IGF2  MARK1  NTRK1  RAF1  TCF7L2   
23  AURKB  CIC  EZH2  IGF2R  MARK4  NTRK3  RALGDS  TCL1A   
24  AURKC  CKS1B  FAM123B  IKBKB  MBD1  NUMA1  RARA  TET1   
25  AXL  CMPK1  FANCA  IKBKE  MCL1  NUP214  RB1  TET2   
26  BAI3  COL1A1  FANCC  IKZF1  MDM2  NUP98  RECQL4  TFE3   
27  BAP1  CRBN  FANCD2  IL2  MDM4  PAK3  REL  TGFBR2   
28  BCL10  CREB1  FANCF  IL21R  MEN1  PALB2  RET  TGM7   
29  BCL11A  CREBBP  FANCG  IL6ST  MET  PARP1  RHOH  THBS1   
30  BCL11B  CRKL  FAS  IL7R  MITF  PAX3  RNASEL  TIMP3   
31  BCL2  CRTC1  FBXW7  ING4  MLH1  PAX5  RNF2  TLR4   
32  BCL2L1  CSF1R  FGFR1  IRF4  MLL  PAX7  RNF213  TLX1   
33  BCL2L2  CSMD3  FGFR2  IRS2  MLL2  PAX8  ROS1  TNFAIP3   
34  BCL3  CTNNA1  FGFR3  ITGA10  MLL3  PBRM1  RPS6KA2  TNFRSF14   
35  BCL6  CTNNB1  FGFR4  ITGA9  MLLT10  PBX1  RRM1  TNK2   
36  BCL9  CYLD  FH  ITGB2  MMP2  PDE4DIP  RUNX1  TOP1   
37  BCR  CYP2C19  FLCN  ITGB3  MN1  PDGFB  RUNX1T1  TP53   
38  BIRC2  CYP2D6  FLI1  JAK1  MPL  PDGFRA  SAMD9  TPR   
39  BIRC3  DAXX  FLT1  JAK2  MRE11A  PDGFRB  SBDS  TRIM24   
40  BIRC5  DCC  FLT3  JAK3  MSH2  PER1  SDHA  TRIM33   
41  BLM  DDB2  FLT4  JUN  MSH6  PGAP3  SDHB  TRIP11   
42  BLNK  DDIT3  FN1  KAT6A  MTOR  PHOX2B  SDHC  TRRAP   
43  BMPR1A  DDR2  FOXL2  KAT6B  MTR  PIK3C2B  SDHD  TSC1   
44  BRAF  DEK  FOXO1  KDM5C  MTRR  PIK3CA  SEPT9  TSC2   
45  BRD3  DICER1  FOXO3  KDM6A  MUC1  PIK3CB  SETD2  TSHR   
46  BRIP1  DNMT3A  FOXP1  KDR  MUTYH  PIK3CD  SF3B1  UBR5   
47  BTK  DPYD  FOXP4  KEAP1  MYB  PIK3CG  SGK1  UGT1A1   
48  BUB1B  DST  FZR1  KIT  MYC  PIK3R1  SH2D1A  USP9X   
49  CARD11  EGFR  G6PD  KLF6  MYCL1  PIK3R2  SMAD2  VHL   
50  CASC5  EML4  GATA1  KRAS  MYCN  PIM1  SMAD4  WAS   
Table S2.

Description of 153 potential somatic variants selected in 23 samples of uterine tumors.

Sample  Chr:Pos  Gene  HGVS c.  HGVS p.  Effect 
UCS23:178921549  PIK3CA  c.1031T>C  p.Val344Ala  Missense 
6:94120318  EPHA7  c.733G>A  p.Ala245Thr  Missense 
7:116339356  MET  c.218T>A  p.Leu73Ter  LOF: stop - gained 
8:48776121  PRKDC  c.5586delT  p.Phe1862Leufs  LOF: frameshift 
15:99500303  IGF1R  c.3736C>T  p.Arg1246Cys  Missense 
17:7577547  TP53  c.734G>T  p.Gly245Val  Missense 
22:33253291  TIMP3  c.260delC  p.Glu88Argfs  LOF: frameshift 
UCS51:11227575  MTOR  c.4254-1G>A  r.spl?  LOF: splice - acceptor 
1:27105553  ARID1A  c.5164C>T  p.Arg1722Ter  LOF: stop - gained 
1:65310574  JAK1  c.2116-2A>G  r.spl?  LOF: splice - acceptor 
3:178952085  PIK3CA  c.3140A>G  p.His1047Arg  Missense 
10:76735809  KAT6B  c.1714C>T  p.Arg572Cys  Missense 
10:97969609  BLNK  c.731C>T  p.Pro244Leu  Missense 
11:108114777  ATM  c.594C>A  p.Cys198Ter  LOF: stop - gained 
14:95572101  DICER1  c.3007C>T  p.Arg1003Ter  LOF: stop - gained 
17:29588751  NF1  c.4600C>T  p.Arg1534Ter  LOF: stop - gained 
17:29665110  NF1  c.6772C>T  p.Arg2258Ter  LOF: stop - gained 
19:45260400  BCL3  c.646C>T  p.Arg216Cys  Missense 
1:47685756  TAL1  c.632G>A  p.Arg211His  Missense 
2:25469168  DNMT3A  c.1290T>G  p.Asn430Lys  Missense 
2:212587219  ERBB4  c.782A>C  p.Gln261Pro  Missense 
7:98513427  TRRAP  c.2281C>T  p.Arg761Trp  Missense 
9:37015073  PAX5  c.331G>A  p.Ala111Thr  Missense 
19:11098401  SMARCA4  c.919C>T  p.Pro307Ser  Missense 
20:36030940  SRC  c.1219G>A  p.Asp407Asn  Missense 
X:44942716  KDM6A  c.3452A>G  p.Gln1151Arg  Missense 
X:66766207  AR  c.1219C>T  p.Arg407Cys  Missense 
UCS99:139391355  NOTCH1  c.6836C>T  p.Ala2279Val  Missense 
10:123298226  FGFR2  c.628C>T  p.Arg210Ter  LOF: stop - gained 
12:49444719  KMT2D  c.2747C>T  p.Pro916Leu  Missense 
15:40916649  KNL1  c.4265G>A  p.Arg1422Gln  Missense 
17:7578442  TP53  c.488A>G  p.Tyr163Cys  Missense 
3:52440867  BAP1  c.637C>T  p.Arg213Cys  Missense 
21:39755729  ERG  c.1057G>A  p.Glu353Lys  Missense 
UCS133:178916854  PIK3CA  c.241G>A  p.Glu81Lys  Missense 
11:71726283  NUMA1  c.2266G>T  p.Glu756Ter  LOF: stop - gained 
13:29001422  FLT1  c.1310C>T  p.Ser437Leu  Missense 
14:95574253  DICER1  c.2614G>A  p.Ala872Thr  Missense 
17:7577534  TP53  c.747G>T  p.Arg249Ser  Missense 
5:176636902  NSD1  c.1502A>G  p.Lys501Arg  Missense 
7:98609947  TRRAP  c.11549G>A  p.Arg3850His  Missense 
UCS192:212295800  ERBB4  c.2513G>A  p.Arg838Gln  Missense 
9:5126715  JAK2  c.3323A>G  p.Asn1108Ser  Missense 
17:7577580  TP53  c.701A>G  p.Tyr234Cys  Missense 
17:37829120  PGAP3  c.900-1G>A  r.spl?  LOF: splice - acceptor 
ULMS381:120458122  NOTCH2  c.7223T>A  p.Leu2408His  Missense 
6:51914991  PKHD1  c.2243C>T  p.Ala748Val  Missense 
16:23646942  PALB2  c.925A>G  p.Ile309Val  Missense 
17:5462805  NLRP1  c.1211G>A  p.Arg404Gln  Missense 
17:37864584  ERBB2  c.236A>C  p.Glu79Ala  Missense 
3:65425588  MAGI1  c.1234_1236delCAG  p.Gln421del  Inframe - deletion 
19:17937659  JAK3  c.3268G>A  p.Ala1090Thr  Missense 
ULMS393:188327501  LPP  c.982C>T  p.Arg328Trp  Missense 
7:142562071  EPHB6  c.513_515delCTC  p.Ser176del  LOF: disruptive - inframe - del 
17:7577545  TP53  c.736A>G  p.Met246Val  Missense 
ULMS40  2:100218031  AFF3  c.1310_1312delGCA  p.Ser444del  LOF: disruptive - inframe - del 
ULMS4011:108139268  ATM  c.2770C>T  p.Arg924Trp  Missense 
17:7577120  TP53  c.818G>A  p.Arg273His  Missense 
17:37881117  ERBB2  c.2446C>T  p.Arg816Cys  Missense 
X:76891445  ATRX  c.4660A>T  p.Arg1554Ter  LOF: stop - gained 
ULMS453:128204775  GATA2  c.666G>C  p.Lys222Asn  Missense 
11:108160506  ATM  c.4414T>G  p.Leu1472Val  Missense 
12:121437187  HNF1A  c.1618A>G  p.Lys540Glu  Missense 
17:7578290  TP53  c.560-1G>C  r.spl?  LOF: splice - acceptor 
16:2135281  TSC2  c.4620C>A  p.Tyr1540Ter  LOF: stop - gained 
ULMS50b  2:29432740  ALK  c.3748A>G  p.Ile1250Val  Missense 
ULMS521:6528318  PLEKHG5  c.2815C>T  p.Arg939Cys  Missense 
1:120459251  NOTCH2  c.6094C>A  p.His2032Asn  Missense 
9:139400980  NOTCH1  c.4013C>T  p.Ala1338Val  Missense 
11:118377142  KMT2A  c.10535C>T  p.Pro3512Leu  Missense 
12:49416396  KMT2D  c.16315C>T  p.Arg5439Trp  Missense 
13:26978093  CDK8  c.1270C>T  p.Arg424Cys  Missense 
16:2130319  TSC2  c.3551C>T  p.Ala1184Val  Missense 
16:3779521  CREBBP  c.5527T>C  p.Cys1843Arg  Missense 
16:3790470  CREBBP  c.4063G>A  p.Gly1355Arg  Missense 
17:7574017  TP53  c.1010G>A  p.Arg337His  Missense 
  22:36678790  MYH9  c.5807G>A  p.Arg1936Gln  Missense 
ULMS595:112173857  APC  c.2566C>T  p.Arg856Cys  Missense 
6:135511289  MYB  c.331G>A  p.Gly111Ser  Missense 
6:135539101  MYB  c.2269C>T  p.Arg757Trp  Missense 
6:152832196  SYNE1  c.352C>T  p.Arg118Ter  LOF: stop - gained 
7:2946463  CARD11  c.3274C>T  p.Arg1092Ter  LOF: stop - gained 
18:22806393  ZNF521  c.1489C>T  p.Arg497Ter  LOF: stop - gained 
18:47803035  MBD1  c.472C>T  p.Arg158Ter  LOF: stop - gained 
20:57429026  GNAS  c.706G>A  p.Asp236Asn  Missense 
20:57480457  GNAS  c.2381A>C  p.Lys794Thr  Missense 
22:30069262  NF2  c.1127G>A  p.Arg376Gln  Missense 
ESS2 (LG-ESS)6:152706896  SYNE1  c.8565G>A  p.Trp2855Ter  LOF: stop - gained 
11:108175463  ATM  c.5558A>T  p.Asp1853Val  Missense 
14:81610269  TSHR  c.1867G>T  p.Ala623Ser  Missense 
17:7577121  TP53  c.817C>T  p.Arg273Cys  Missense 
17:7577139  TP53  c.799C>T  p.Arg267Trp  Missense 
19:3119273  GNA11  c.805G>A  p.Val269Ile  Missense 
22:41553308  EP300  c.3397C>T  p.Arg1133Trp  Missense 
ESS31:145015874  PDE4DIP  c.214C>T  p.Arg72Ter  LOF: stop - gained 
5:112154777  APC  c.1048T>C  p.Ser350Pro  Missense 
5:112162855  APC  c.1459G>A  p.Gly487Arg  Missense 
6:56328464  DST  c.16429C>T  p.Arg5477Trp  Missense 
12:49418436  KMT2D  c.15977T>C  p.Leu5326Pro  Missense 
17:7578176  TP53  c.672+1G>A  r.spl?  LOF: splice - donor 
17:29556250  NF1  c.2617C>T  p.Arg873Cys  Missense 
17:29677234  NF1  c.7355G>T  p.Arg2452Leu  Missense 
ESS411:108141990  ATM  c.2934delT  p.Leu979Cysfs  LOF: frameshift 
16:3820773  CREBBP  c.2678C>T  p.Ser893Leu  Missense 
ESS51:11217330  MTOR  c.4348T>G  p.Tyr1450Asp  Missense 
14:51227050  NIN  c.1924G>A  p.Glu642Lys  Missense 
19:17937659  JAK3  c.3268G>A  p.Ala1090Thr  Missense 
20:41101170  PTPRT  c.1186G>A  p.Val396Ile  Missense 
ESS76:33287248  DAXX  c.1885G>A  p.Val629Ile  Missense 
6:117710646  ROS1  c.1626delT  p.Phe542Leufs  LOF: frameshift 
14:95590677  DICER1  c.1232C>A  p.Ser411Ter  LOF: stop - gained 
ESS7  X:76939115  ATRX  c.1633C>G  p.Gln545Glu  Missense 
ESS91:144906139  PDE4DIP  c.2494delC  p.Gln832Argfs  LOF: frameshift 
1:145536012  ITGA10  c.2104G>A  p.Ala702Thr  Missense 
3:178936091  PIK3CA  c.1633G>A  p.Glu545Lys  Missense 
4:55564641  KIT  c.529C>T  p.Arg177Cys  Missense 
4:55976709  KDR  c.1116G>C  p.Glu372Asp  Missense 
5:112175711  APC  c.4420G>A  p.Ala1474Thr  Missense 
5:180048651  FLT4  c.1911C>G  p.Ser637Arg  Missense 
ESS581071:145015874  PDE4DIP  c.214C>T  p.Arg72Ter  LOF: stop - gained 
1:145536012  ITGA10  c.2104G>A  p.Ala702Thr  Missense 
2:142567932  LRP1B  c.121G>A  p.Asp41Asn  Missense 
4:153332477  FBXW7  c.479C>T  p.Pro160Leu  Missense 
6:56328464  DST  c.16429C>T  p.Arg5477Trp  Missense 
6:135516944  MYB  c.1007C>T  p.Thr336Ile  Missense 
7:91570414  AKAP9  c.1A>G  p.Met1?  LOF: initiator - codon 
17:7578176  TP53  c.672+1G>A  r.spl?  LOF: splice - donor 
X:41056743  USP9X  c.4360delG  p.Gly1454Glufs  LOF: frameshift 
X:66863156  AR  c.1675A>T  p.Thr559Ser  Missense 
ADS21:162748436  DDR2  c.2350T>C  p.Cys784Arg  Missense 
2:25467477  DNMT3A  c.1599C>A  p.Tyr533Ter  LOF: stop - gained 
2:209110123  IDH1  c.440C>A  p.Pro147His  Missense 
3:38182306  MYD88  c.766T>C  p.Phe256Leu  Missense 
5:131927073  RAD50  c.1610delA  p.Met538Trpfs  LOF: frameshift 
6:33288629  DAXX  c.959A>G  p.Gln320Arg  Missense 
6:93979315  EPHA7  c.1513C>A  p.Leu505Met  Missense 
7:98501128  TRRAP  c.1024G>T  p.Glu342Ter  LOF: stop - gained 
8:48711786  PRKDC  c.10279G>T  p.Glu3427Ter  LOF: stop - gained 
9:98209391  PTCH1  c.4147C>A  p.Pro1383Thr  Missense 
10:76781925  KAT6B  c.3308_3310delAAG  p.Glu1104del  LOF: disruptive - inframe - del 
11:106558436  GUCY1A2  c.2131G>T  p.Glu711Ter  LOF: stop - gained 
15:90630454  IDH2  c.857A>G  p.Glu286Gly  Missense 
16:2138078  TSC2  c.5098G>T  p.Ala1700Ser  Missense 
22:29121048  CHEK2  c.638T>C  p.Val213Ala  Missense 
X:53223847  KDM5C  c.3512A>G  p.Lys1171Arg  Missense 
ULM1197:116403114  MET  c.2429A>C  p.His810Pro  Missense 
22:39621795  PDGFB  c.659dupA  p.Lys222Glnfs  LOF: frameshift 
ULM1431:11307996  MTOR  c.995_996dupGG  p.Leu333Glyfs  LOF: frameshift 
9:32634260  TAF1L  c.1318A>G  p.Ile440Val  Missense 
19:17945696  JAK3  c.2164G>A  p.Val722Ile  Missense 
ULM1528:41791030  KAT6A  c.4708G>A  p.Asp1570Asn  Missense 
11:118344893  KMT2A  c.3019G>T  p.Gly1007Cys  Missense 
19:1207176  STK11  c.263_264insC  p.Asn90Glnfs  LOF: frameshift 

REFERENCES
[1]
KC Wen , HC Horng , PH Wang , YJ Chen , MS Yen , HT Ng , et al.
Uterine sarcoma Part I-Uterine leiomyosarcoma: The Topic Advisory Group systematic review.
[2]
WHO Classification of Tumours Editorial Board .
Female Genital Tumours.
5th ed., International Agency for Research on Cancer, (2020),
[3]
L Gonzalez Dos Anjos , BC de Almeida , T Gomes de Almeida , A Mourão Lavorato Rocha , G De Nardo Maffazioli , FA Soares , et al.
Could miRNA Signatures be Useful for Predicting Uterine Sarcoma and Carcinosarcoma Prognosis and Treatment?.
Cancers (Basel), 10 (2018), pp. 315
[4]
N Mbatani , AB Olawaiye , J Prat .
Uterine sarcomas.
[5]
S Tuyaerts , F Amant .
Endometrial Stromal Sarcomas: A Revision of Their Potential as Targets for Immunotherapy.
Vaccines (Basel), 6 (2018), pp. 56
[6]
X Ma , J Wang , J Wang , CX Ma , X Gao , V Patriub , et al.
The JAZF1-SUZ12 fusion protein disrupts PRC2 complexes and impairs chromatin repression during human endometrial stromal tumorogenesis.
[7]
A Hrzenjak .
JAZF1/SUZ12 gene fusion in endometrial stromal sarcomas.
[8]
L Han , YJ Liu , RW Ricciotti , JG Mantilla .
A novel MBTD1-PHF1 gene fusion in endometrial stromal sarcoma: A case report and literature review.
Genes Chromosomes Cancer, 59 (2020), pp. 428-432
[9]
F Micci , M Brunetti , P Dal Cin , MR Nucci , L Gorunova , S Heim , et al.
Fusion of the genes BRD8 and PHF1 in endometrial stromal sarcoma.
Genes Chromosomes Cancer, 56 (2017), pp. 841-845
[10]
B Dewaele , J Przybyl , A Quattrone , J Finalet Ferreiro , V Vanspauwen , E Geerdens , et al.
Identification of a novel, recurrent MBTD1-CXorf67 fusion in low-grade endometrial stromal sarcoma.
[11]
YJ Choi , SH Jung , MS Kim , IP Baek , JK Rhee , SH Lee , et al.
Genomic landscape of endometrial stromal sarcoma of uterus.
[12]
F Amant , A Coosemans , M Debiec-Rychter , D Timmerman , I Vergote .
Clinical management of uterine sarcomas.
[13]
BM Seddon , R Davda .
Uterine sarcomas–recent progress and future challenges.
[14]
H Kobayashi , C Uekuri , J Akasaka , F Ito , A Shigemitsu , N Koike , et al.
The biology of uterine sarcomas: A review and update.
Mol Clin Oncol, 1 (2013), pp. 560-599
[15]
Cancer Genome Atlas Research Network Cancer Genome Atlas Research Network .
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas.
[16]
H Tsuyoshi , Y Yoshida .
Molecular biomarkers for uterine leiomyosarcoma and endometrial stromal sarcoma.
[17]
AD Cherniack , H Shen , V Walter , C Stewart , BA Murray , R Bowlby , et al.
Integrated Molecular Characterization of Uterine Carcinosarcoma.
[18]
GR Bean , J Anderson , AR Sangoi , G Krings , K Garg .
DICER1 mutations are frequent in müllerian adenosarcomas and are independent of rhabdomyosarcomatous differentiation.
[19]
CM Berra , GT Torrezan , CA de Paula , R Hsieh , SV Lourenço , DM Carraro .
Use of uracil-DNA glycosylase enzyme to reduce DNA-related artifacts from formalin-fixed and paraffin-embedded tissues in diagnostic routine.
Appl Cancer Res, 39 (2019), pp. 1-6
[20]
P Shannon , A Markiel , O Ozier , NS Baliga , JT Wang , D Ramage , et al.
Cytoscape: a software environment for integrated models of biomolecular interaction networks.
[21]
F Shabani Azim , H Houri , Z Ghalavand , B Nikmanesh .
Next Generation Sequencing in Clinical Oncology: Applications, Challenges and Promises: A Review Article.
Iran J Public Health, 47 (2018), pp. 1453-1457
[22]
MH Bailey , C Tokheim , E Porta-Pardo , S Sengupta , D Bertrand , A Weerasinghe , et al.
Comprehensive Characterization of Cancer Driver Genes and Mutations.
[23]
A Alqahtani , HSK Ayesh , H Halawani .
PIK3CA Gene Mutations in Solid Malignancies: Association with Clinicopathological Parameters and Prognosis.
Cancers (Basel), 12 (2019), pp. 93
[24]
Y Samuels , Z Wang , A Bardelli , N Silliman , J Ptak , S Szabo , et al.
High frequency of mutations of the PIK3CA gene in human cancers.
[25]
T Cuppens , D Annibali , A Coosemans , J Trovik , N Ter Haar , E Colas , et al.
Potential Targets’ Analysis Reveals Dual PI3K/mTOR Pathway Inhibition as a Promising Therapeutic Strategy for Uterine Leiomyosarcomas-an ENITEC Group Initiative.
[26]
R Ueda , G Kohanbash , K Sasaki , M Fujita , X Zhu , ER Kastenhuber , et al.
Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1.
[27]
BC de Almeida , N Garcia , G Maffazioli , LG dos Anjos , EC Baracat , KC Carvalho .
Oncomirs Expression Profiling in Uterine Leiomyosarcoma Cells.
Int J Mol Sci, 19 (2017), pp. 52
[28]
BA Teicher .
Searching for molecular targets in sarcoma.
[29]
M Roy , S Kumar , N Bhatla , MD Ray , L Kumar , D Jain , et al.
Androgen Receptor Expression in Endometrial Stromal Sarcoma: Correlation With Clinicopathologic Features.
[30]
MH Baek , JY Park , Y Park , KR Kim , DY Kim , DS Suh , et al.
Androgen receptor as a prognostic biomarker and therapeutic target in uterine leiomyosarcoma.
[31]
M Yamaguchi , S Kusunoki , T Hirayama , K Fujino , Y Terao , A Itakura .
Case of leiomyosarcoma arising from subserosal leiomyoma.
J Obstet Gynaecol Res, 45 (2019), pp. 1944-1947
[32]
LG dos Anjos , IW da Cunha , EC Baracat , KC Carvalho .
Genetic and Epigenetic Features in Uterine Smooth Muscle Tumors: An Update.
Clin Oncol, 4 (2019),
[33]
National Center for Biotechnology Information .
ClinVar; [VCV000430818.2].
[34]
N Sobreira , M Brucato , L Zhang , C Ladd-Acosta , C Ongaco , J Romm , et al.
Patients with a Kabuki syndrome phenotype demonstrate DNA methylation abnormalities.
[35]
JG Tate , S Bamford , HC Jubb , Z Sondka , DM Beare , N Bindal , et al.
COSMIC: the Catalogue Of Somatic Mutations In Cancer.
[36]
TK Er , YF Su , CC Wu , CC Chen , J Wang , TH Hsieh , et al.
Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer.
[37]
YH Soung , JW Lee , SY Kim , YP Wang , KH Jo , SW Moon , et al.
Somatic mutations of the ERBB4 kinase domain in human cancers.
[38]
M Hollmén , K Elenius .
Potential of ErbB4 antibodies for cancer therapy.
[39]
RA Buerki , CM Horbinski , T Kruser , PM Horowitz , CD James , RV Lukas .
An overview of meningiomas.
[40]
MX Xiu , YM Liu .
The role of oncogenic Notch2 signaling in cancer: a novel therapeutic target.
Am J Cancer Res, 9 (2019), pp. 837-854
[41]
E Cocco , S Lopez , AD Santin , M Scaltriti .
Prevalence and role of HER2 mutations in cancer.

No potential conflict of interest was reported.

Copyright © 2021. CLINICS
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.clinsp.2024.100350
No mostrar más