covid
Buscar en
Educación Química
Toda la web
Inicio Educación Química Properties of antimony triiodide photodecomposition and Lewis acidity
Información de la revista
Vol. 28. Núm. 1.
Páginas 11-13 (enero 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3227
Vol. 28. Núm. 1.
Páginas 11-13 (enero 2016)
Didactic
Open Access
Properties of antimony triiodide photodecomposition and Lewis acidity
Propiedades del triioduro de antimonio fotodescomposición y acidez de Lewis
Visitas
3227
Héctor J. Fasolia,b,
Autor para correspondencia
hfasoli@yahoo.com

Corresponding author.
, Fernando Yonnib, Juan J. Testab,c
a Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, San Fernando del Valle, Catamarca, Argentina
b Facultad de Ciencias Fisicomatemáticas e Ingeniería, Universidad Católica Argentina, Buenos Aires, Argentina
c Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, Argentina
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Abstract

Antimony triiodide is a versatile compound that is not studied in detail in the current Inorganic Chemistry literature at the undergraduate level. In this work we propose a simple microscale synthesis describing two other interesting properties which are not reported in the common chemical literature: photo-oxidation and acid–base reaction in non-aqueous media. The experiment can be successfully and safely achieved in a two-hour lab class at the sophomore level.

Keywords:
Antimony triiodide
Microscale synthesis
Photo-oxidation
Lewis acids and bases
Resumen

El triioduro de antimonio es un compuesto versátil que no se describe detalladamente en la bibliografía de Química inorgánica que se emplea habitualmente en las carreras de grado. En este trabajo proponemos su síntesis en microescala y describimos 2 propiedades interesantes que no se reportan en la bibliografía química más accesible: la fotooxidación y su reactividad ácido-base en solventes no acuosos. La experiencia puede realizarse de manera exitosa y segura en una clase de laboratorio de 2h en un curso básico de Química inorgánica.

Palabras clave:
Triioduro de antimonio
Síntesis en microescala
Fotooxidación
Ácidos y bases de Lewis
Texto completo
Introduction

Antimony trihalides are interesting compounds used as flame retardant for plastics (Kirk & Othmer, 1992). Antimony triidodide is also related to SbXI (X: O, S or Se); this compound as well as SbXBr exhibits important ferroelectricity, pyroelectricity, photoconduction and dielectric polarization properties (Kirk & Othmer, 1992; Mady, Eid, & Soliman, 1987). In the last years, many new physical and chemical properties of SbI3 have been reported (Bharathi Mohan, Anu Philip, & Sunandana, 2008; Kepinska, Nowak, Duka, Kotyczka-Morańska, & Szperlich, 2011; Kepinska et al., 2014; Nobrega, Espínola, Fonseca, Arakaki, & de Oliveira, 2007; Pereira dos Santos, Fonseca, Espínola, de Oliveira, & Arakaki, 2005), including its application as dopant in thermoelectric materials (Chung et al., 2000). However, SbI3 is rarely mentioned in modern inorganic chemistry textbooks; on the other hand, the only physical or chemical properties of SbI 3 which are frequently reported in reference or “classic” inorganic chemistry literature are: crystal color (yellow or red depending on temperature), tendency to sublimate (above 100°C), pyramidal molecular structure, physical and chemical (by complex formation) solubility as well as melting (168°C) and boiling points (420°C) (Remy, 1956; Wells, 1962).

The preparation of SbI3 is described in an interesting book on chemical curiosities (Roesky & Mockel, 1996). On the other hand, many years ago we report the acid–base properties of SbI3 (Guerrero & Fasoli, 1987) and noticed about its photo-oxidation as an inconvenience for the UV/VIS spectrometrical analysis of Sb(III) in presence of iodide and Rhodamine B (Guerrero & Fasoli, 1988).

We propose here a simple microscale synthesis of SbI3 with ca. ideal yield describing two other interesting properties which are not reported in the common chemical literature: photo-decomposition (Mellor, 1947) and acid–base reaction in non-aqueous media.

The experiment can be successfully and safely achieved in a two-hour lab class at the sophomore level.

ExperimentalMicroscale synthesis of antimony triiodide. Preparation of a stable dilute solution

Place 100mg (0.8mmol) of antimony powder into a 25mL round-bottom flask. Wrap the flask with aluminum foil to prevent the action of light. Dissolve 10mg (0.4mmol) of iodine in 15mL of dry toluene (use anhydrous Na2SO4). Add the iodine solution to the flask containing the antimony. Attach a reflux condenser and heat to boil. Keep boiling until the color of the refluxing solution is amber (violet tinge of I2 should not be observed). Filter through a fritted glass funnel to remove the excess of antimony, and collect the solution into a 25-mL Erlenmeyer flask (wrapped with aluminum foil). Beautiful crystals of antimony triiodide are formed cooling down the solution to room temperature. Filtrate to separate the crystals of antimony triiodide (a Hirsch funnel is recommended); then, the saturated solution should be diluted by adding 15mL of fresh toluene. Keep the yellow solution protected from the action of light.

From the weights of the initial and the unreacted antimony calculate the weight of metal that reacted with the initial iodine; the empirical formula of the compound is easy to calculate from this data.

Photodecomposition of antimony triiodide

Prepare three clean and dry 5-mL test tubes (use aluminum foil as before). Place 3mL of antimony triiodide dilute solution in each tube and seal the tubes by mean of PVC cooking foil (or any plastic wrap). Proceed as follows:

  • Tube #1: Make a small hole in the plastic foil and eliminate the aluminum foil. Leave the test tube exposed to daylight in presence of air (same but fastest results can be obtained by bubbling oxygen or air into the solution).

  • Tube #2: Leave the solution in the tube exposed to daylight but not to air (nitrogen can be bubbled for best results).

  • Tube # 3: Make a small hole in the plastic foil but the tube is maintained in darkness, while the air enters.

After a few minutes, turbidity appears in tube #1 at the time that a violet tinge is easily perceived (iodine can be detected by shaking the toluene solution with a water-based starch dispersion). Tubes 2 and 3 show no changes for a long time (actually, protected antimony triiodide solutions are stable indefinitely). The light induced reaction can be written in a simplified way as (Mellor, 1947):

SbI3+SbIO+I2
Note: Same results are obtained if the saturated solution is prepared from the filtered off crystals of antimony triiodide. However, the crystals dissolve very slowly and tend to form a colloidal dispersion.

Solvent effect on photodecomposition

Place 0.5mL of the stock dilute solution of SbI3 in two small test tubes. Add 4.5mL of toluene to one of the tubes, and 4.5mL of dry carbon tetrachloride to the other one. Expose both test tubes to sunlight. Decomposition in toluene solution is clearly observable after a few minutes; on the other hand, decomposition takes about half an hour to be observable in carbon tetrachloride solution.

Acid–base properties of SbI3 in toluene solution

Add 2 or 3 drops of colorless toluene solution of Rhodamine B to 1mL of diluted SbI3 toluene solution. A purple color appears due to reaction of acid SbI3 with the basic form of the dye. A few drops of ethylamine in toluene restore the system to the original situation (colorless). The indicator solution is prepared by extraction of 5mL of 10−3M aqueous solution of Rhodamine B with 5mL of fresh toluene (Remy, 1956). The acid–base reaction can be written as:

SbI3+Ro=[SbI3·R]+−
where Ro and R+− accounts for the colorless and purple form of Rhodamine B.

Discussion

A close to 1:3 antimony (Sb) to iodine (I) ratio is obtained with normal skills.

The photodecomposition of antimony triiodide constitutes an interesting example of oxidation by O2 catalyzed by light; there are no other simple experiment involving oxygen in a photo-induced reaction.

Although to the best of our knowledge there are no references about the mechanism of this reaction, it can be inferred that singlet-O2 (1Δg) could be involved: according to recent papers, electron-donor solvents stabilized the singlet excited form of molecular oxygen (Abdel-Shafi & Wilkinson, 2000; Darmanyan, Lee, & Jenks, 1999).

On the other hand, SbI3 provides an easy-to-perform experiment of Lewis acid–base reaction in organic solvent: group 15 trihalides are well-known electron acceptors by utilizing the available d orbitals (Sethy & Raghavan, 1998); Rhodamine B acts as an acid–base indicator of the neutralization between SbI3 (Lewis acid, A) and amines (Lewis base, B) with formation of an acid–base adduct (A–B):

A+BA–B
However, it must be remembered that antimony (III) compounds can also act as poor soft Lewis bases (Shriver, Atkins, & Langford, 1996).

Conclusions

In a two-hour session interesting experiments involving inorganic synthesis, photochemical oxidation and acid–base properties in non-aqueous solvents can be easily performed. In brief, synthesis and properties of antimony triiodide constitute an excellent experimental basis for a course of Inorganic Chemistry at the sophomore level.

Conflict of interest

The authors declare no conflict of interest.

References
[Abdel-Shafi and Wilkinson, 2000]
A. Abdel-Shafi, F. Wilkinson.
Charge transfer effects on the efficiency of singlet oxygen production following oxygen quenching of excited singlet and triplet states of aromatic hydrocarbons in acetonitrile.
Journal of Physical Chemistry A, 104 (2000), pp. 5447-5757
[Bharathi Mohan et al., 2008]
D. Bharathi Mohan, Anu Philip, C.S. Sunandana.
Iodization of antimony thin films: XRD, SEM and optical studies of nanostructured SbI3.
Vacuum, 82 (2008), pp. 561-565
[Chung et al., 2000]
D. Chung, T. Hogan, M. Rocci-Lane, P. Brazis, M. Kannewurf, M. Bastea, et al.
CsBi4Te6: A high-performance thermoelectric material for low-temperature applications.
Science, 287 (2000), pp. 1024-1027
[Darmanyan et al., 1999]
A. Darmanyan, W. Lee, W. Jenks.
Charge transfer interactions in the generation of singlet oxygen by strong electron donors.
Journal of Physical Chemistry A, 103 (1999), pp. 2705-2711
[Guerrero and Fasoli, 1987]
A. Guerrero, H. Fasoli.
Determinación Directa de Antimonio.
Actas del XVIII Congreso Argentino de Química,
[Guerrero and Fasoli, 1988]
A. Guerrero, H. Fasoli.
Determinacion Directa de Antimonio (III) por Rodamina B.
Boletín de la Sociedad Química del Perú, 54 (1988), pp. 33-37
[Kepinska et al., 2011]
M. Kepinska, M. Nowak, P. Duka, M. Kotyczka-Morańska, P. Szperlich.
Optical properties of SbI3 single crystalline platelets.
Optical Materials, 33 (2011), pp. 1753-1759
[Kepinska et al., 2014]
M. Kepinska, A. Starczewska, I. Bednarczyk, J. Szala, P. Szperlich, K. Mistewicz.
Fabrication and characterisation of SbI3-opal structures.
Materials Letters, 130 (2014), pp. 17-20
[Kirk and Othmer, 1992]
Kirk, Othmer.
4th ed., pp. 389-390
[Mady et al., 1987]
Kh. Mady, A. Eid, W. Soliman.
Electrical conductivity of antimony triiodide.
Journal of Materials Science Letters, 6 (1987), pp. 211-213
[Mellor, 1947]
J.W. Mellor.
Longmans, Greens & Co., (1947), pp. 500
[Nobrega et al., 2007]
A. Nobrega, J. Espínola, M. Fonseca, L. Arakaki, S. de Oliveira.
Thermochimica Acta, 456 (2007), pp. 102-105
[Pereira dos Santos et al., 2005]
A. Pereira dos Santos, M. Fonseca, J. Espínola, S. de Oliveira, L. Arakaki.
Adducts of antimony triiodide and 2-aminomethylpyridines: Synthesis, characterization and thermochemistry.
Thermochimica Acta, 438 (2005), pp. 90-94
[Remy, 1956]
H. Remy.
Elsevier Publishing Co., (1956), pp. 670
[Roesky and Mockel, 1996]
H. Roesky, K. Mockel.
Chemical curiosities.
VCH, (1996), pp. 60
[Sethy and Raghavan, 1998]
M. Sethy, P. Raghavan.
Concepts and problems in inorganic chemistry.
Discovery Publishing House, (1998), pp. 164
[Shriver et al., 1996]
D. Shriver, P. Atkins, C. Langford.
Inorganic chemistry.
Oxford University Press, (1996), pp. 449
[Wells, 1962]
A. Wells.
Structural inorganic chemistry.
Oxford Clarendon Press, (1962), pp. 663

Peer Review under the responsibility of Universidad Nacional Autónoma de México.

Copyright © 2016. Universidad Nacional Autónoma de México, Facultad de Química
Descargar PDF
Opciones de artículo