covid
Buscar en
Endocrinología y Nutrición
Toda la web
Inicio Endocrinología y Nutrición Fallo celular beta y progresión de la diabetes mellitus tipo 2
Información de la revista
Vol. 50. Núm. 7.
Páginas 274-279 (julio 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 50. Núm. 7.
Páginas 274-279 (julio 2003)
Acceso a texto completo
Fallo celular beta y progresión de la diabetes mellitus tipo 2
Beta-cell failure and progression of type 2 diabetes mellitus
Visitas
36277
F.J. Ampudia-Blasco
Autor para correspondencia
francisco.j.ampudia@uv.es

Correspondencia: Dr. F.J. Ampudia-Blasco. Unidad de Referencia de Diabetes. Servicio de Endocrinología y Nutrición. Hospital Clínico Universitario de Valencia Avda. Blasco Ibáñez, 17. 46010 Valencia. España.
Unidad de Referencia de Diabetes. Servicio de Endocrinología y Nutrición. Hospital Clínico Universitario de Valencia. Valencia. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La diabetes afecta a millones de personas en todo el mundo. Tanto las alteraciones en la sensibilidad de la insulina como en la secreción de la insulina están presentes en la diabetes tipo 2, y es probable que ambas estén genéticamente predeterminadas. La diabetes tipo 2 se caracteriza por una pérdida progresiva de la función de la célula beta durante el curso de la enfermedad. Estudios realizados en diferentes grupos étnicos han demostrado que la progresión desde la tolerancia normal a la glucosa a la diabetes tipo 2 resulta de la pérdida gradual de la función de la célula beta, en presencia de resistencia a la insulina. Esta progresión ocurre a pesar del uso de terapias antidiabéticas inicialmente eficaces, como se demostró en el United Kingdom Prospective Diabetes Study (UKPDS). Factores ambientales (obesidad, falta de ejercicio) y los efectos tóxicos de la hiperglucemia y los valores elevados de ácidos grasos libres pueden contribuir conjuntamente al deterioro de la célula beta. Entre las alteraciones de la célula beta en los pacientes con diabetes tipo 2 se incluyen defectos en la secreción de insulina, en la conversión de proinsulina a insulina, y depósito de amiloide en los islotes pancreáticos. Es probable que una intervención temprana y agresiva, potencialmente mediante el uso de terapias combinadas y dirigida contra los mecanismos patogénicos subyacentes en la diabetes tipo 2, pueda mejorar el manejo terapéutico de la enfermedad.

Palabras clave:
Resistencia a la insulina
Fallo de célula beta
Disfunción de la célula beta
Patogenia
Diabetes tipo 2

Diabetes affects millions of people worldwide. Defects in insulin sensitivity and insulin secretion are both present in type 2 diabetes and both are probably genetically predetermined. Type 2 diabetes is characterized by a progressive loss of beta-cell function throughout the course of the disease. Studies in different ethnic groups have shown that progression from normal glucose tolerance to type 2 diabetes results from gradual deterioration in beta-cell function in the presence of insulin resistance. This progression occurs despite initially effective antidiabetic therapies, as demonstrated by the United Kingdom Prospective Diabetes Study (UKPDS). Environmental factors (obesity, lack of exercise) and the toxic effects of hyperglycemia and elevated free fatty acids may all contribute to beta-cell deterioration. Betacell changes in patients with type 2 diabetes include defects in insulin secretion, proinsulin conversion to insulin, and amyloid deposition in the pancreatic islets. Early and aggressive intervention, potentially though combined therapies directed against the pathogenetic mechanisms underlying type 2 diabetes, would probably improve the clinical management of this disease.

Key words:
Insulin resistance
Beta-cell failure
Beta-cell dysfunction
Pathogenesis
Type 2 diabetes
El Texto completo está disponible en PDF
Bibliografía
[1.]
S. Dinnen, J. Gerich, R. Rizza.
Carbohydrate metabolism in noninsulin-dependent diabetes mellitus.
N Engl J Med, 327 (1992), pp. 707-713
[2.]
B. Tamayo-Marco, E. Faure-Nogueras, M.J. Roche-Asensio, E. Rubio-Calvo, E. Sánchez-Oriz.
Salvador-Olivan J A. Prevalence of diabetes and impaired glucose tolerance in Aragon, Spain.
Diabetes Care, 20 (1997), pp. 534-536
[3.]
C. Castell, R. Tresserras, J. Serra, A. Goday, G. Lloveras, L. Salleras.
Prevalence of diabetes in Catalonia (Spain): an oral glucose tolerance test-based population study.
Diabetes Res Clin Pract, 43 (1999), pp. 33-40
[4.]
J. Bayo, C. Sola, F. García, P.M. Latorre, J.A. Vázquez.
Prevalencia de la diabetes mellitus no insulino-dependiente en Lejona (Vizcaya).
Med Clin (Barc), 101 (1993), pp. 609-612
[5.]
J. Franch, J.C. Álvarez, F. Álvarez, F. Diego, R. Hernández, A. Cueto.
Epidemiología de la diabetes mellitus en la provincia de León.
Med Clin (Barc), 98 (1992), pp. 607-611
[6.]
M.C. Serna, M. Madrid, I. Cruz, E. Gasco, M. Ribelles, A. Serra.
Estimación de la prevalencia de diabetes mellitus en seis comarcas de la provincia de Lleida.
Endocrinología, 46 (1999), pp. 83-86
[7.]
P.Z. Zimmet, D.J. McCarty, M.P. de Courten.
The global epidemiology of non-insulin-dependent diabetes mellitus and the metabolic syndrome.
J Diabetes Complications, 11 (1997), pp. 60-68
[8.]
R.A. DeFronzo.
Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balance overview.
Diabetologia, 35 (1992), pp. 389-397
[9.]
R.A. DeFronzo, R.C. Bonadonna, E. Ferrannini.
Pathogenesis of NIDDM. A balance overview.
Diabetes Care, 15 (1992), pp. 318-368
[10.]
R.A. DeFronzo, E. Ferrannini, V. Koivisto.
New concepts in the pathogenesis and treatment of noninsulin-dependent diabetes mellitus.
Am J Med, 74 (1983), pp. 52-81
[11.]
R.A. DeFronzo.
The triumvirate: b-cell, muscle, liver. A collusion responsible for NIDDM.
Diabetes, 37 (1988), pp. 667-687
[12.]
C. Weyer, C. Bogardus, D.M. Mott, R.E. Pratley.
The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus.
J Clin Invest, 104 (1999), pp. 787-794
[13.]
B.C. Martin, J.H. Warra, A.S. Krolewski, R.N. Bergman, J.S. Soeldner, C.R. Kahn.
Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study.
Lancet, 340 (1992), pp. 925-929
[14.]
S.E. Kahn.
The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus.
Am J Med, 108 (2000), pp. S2-S8
[15.]
A. Dunaif, D.T. Finegood.
Beta-cell dysfunction independent of obesity and glucose intolerance in the policystic ovary syndrome.
J Clin Endocrinol Metab, 81 (1996), pp. 942-947
[16.]
W.K. Ward, C.L. Johnston, J.C. Beard, T.J. Benedetti, J.B. Halter, D.J. Porte.
Insulin resistance and impaired insulin secretion in subjects with histories of gestational diabetes mellitus.
Diabetes, 34 (1985), pp. 861-869
[17.]
J.E. Gerich.
The genetic basis of type 2 diabetes mellitus: impaired insulin secretion versus impaired insulin sensitivity.
Endocr Rev, 19 (1998), pp. 491-503
[18.]
R.F. Hamman.
Genetic and environmental determinants of noninsulin-dependent diabetes mellitus (NIDDM).
Diabetes Metab Rev, 8 (1992), pp. 287-338
[19.]
H. Yki-Järvinen.
Pathogenesis of non-insulin-dependent diabetes mellitus.
Lancet, 343 (1994), pp. 91-95
[20.]
C.C. Jensen, M. Cnop, R.L. Hull, W.Y. Fujimoto, S.E. Kahn.
and the American Diabetes Association GENNID Study Group Betacell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the US.
Diabetes, 51 (2002), pp. 2170-2178
[21.]
E. Cerasi, R. Luft.
Insulin response to glucose infusion in diabetic and non-diabetic monozygotic twin pairs Genetic control of insulin response?.
Acta Endocrinol Copenh, 55 (1967), pp. 330-345
[22.]
D.A. Pyke, K.W. Taylor.
Glucose tolerance adn serum insulin in unaffected identical twins of diabetics.
Br Med J, 4 (1967), pp. 21-22
[23.]
A.H. Barnett, A.J. Spiliopoulos, D.A. Pyke, W.A. Stubbs, J. Burrin, K.G. Alberti.
Metabolic studies in unaffected co-twins of non-insulin-dependent diabetics.
BMJ (Clin Res Ed), 282 (1981), pp. 1656-1658
[24.]
A. Vaag, J.E. Henriksen, S. Madsbad, N. Holm, H. Beck-Nielsen.
Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus.
J Clin Invest, 95 (1995), pp. 690-698
[25.]
G. Boden, G.I. Shulman.
Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and b-cell dysfunction.
Eur J Clin Invest, 32 (2002), pp. 14-23
[26.]
R.C. Turner, C.A. Cull, V. Frighi, R.R. Holman.
for the UK Prospective Diabetes Study (UKPDS) Group. Glycemic control with diet, sulphonylurea, metformin, or insulin in patients with type 2 diabetes mellitus. Progressive requirement for multiple therapies (UKPDS 49).
JAMA, 281 (1999), pp. 2005-2012
[27.]
UK Prospective Diabetes Study (UKPDS) Group.
UK Prospective Diabetes Study 16. Overview of 6 years' therapy of type II diabetes: a progressive disease.
Diabetes, 44 (1995), pp. 1249-1258
[28.]
M.A. Pfeifer, J.B. Halter, D.J. Porte.
Insulin secretion in diabetes mellitus.
Am J Med, 70 (1981), pp. 579-588
[29.]
J.L. Leahy.
Natural history of beta-cell dysfunction in NIDDM.
Diabetes Care, 13 (1990), pp. 992-1010
[30.]
K.S. Polonsky, B.D. Given, L.J. Hirsch, H. Tillil, E.T. Shapiro, C. Beebe, et al.
Abnormal patterns of insulin secretion in non-insulindependent diabetes mellitus.
N Engl J Med, 318 (1988), pp. 1231-1239
[31.]
J. Sturis, K.S. Polonsky, E.T. Shapiro, J.D. Blackman, N.M. O'Meara, E. Van Cauter.
Abnormalities in the ultradian oscillations of insulin secretion and glucose levels in type 2 (non-insulindependent) diabetic patients.
Diabetologia, 35 (1992), pp. 681-689
[32.]
S.E. Kahn, D.L. Leonetti, R.L. Prigeon, E.J. Boyko, R.W. Bergstrom, W.Y. Fujimoto.
Proinsulin as a marker for the development of NIDDM in Japanese-American men.
Diabetes, 44 (1995), pp. 173-179
[33.]
Porte D Jr.
Beta-cells in type II diabetes mellitus.
Diabetes, 40 (1991), pp. 166-180
[34.]
D. Porte Jr, S.E. Kahn.
Hyperproinsulinemia and amyloid in NIDDM Clues to etiology of islet beta-cell dysfunction?.
Diabetes, 38 (1989), pp. 1333-1336
[35.]
K.H. Johnson, T.D. O'Brien, C. Betsholtz, P. Westermark.
Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus.
N Engl J Med, 321 (1989), pp. 513-518
[36.]
T.A. Buchanan, A.H. Xiang, R.K. Peters, S.L. Kjos, A. Marroquin, J. Goico, et al.
Protection from type 2 diabetes persists in the TRIPOD cohort eight months after stopping troglitazone.
Diabetes, 50 (2001), pp. A81
[37.]
D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, T.C. Turner.
Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.
Diabetologia, 28 (1985), pp. 412-419
[38.]
H.E. Lebovitz, J.F. Dole, R. Patwardhan, E.B. Rappaport, M.I. Freed.
for the Rosiglitazone Clinical Trials Study Group. Rosiglitazone monotherapy is effective in patients with type 2 diabetes.
J Clin Endocrinol Metab, 86 (2001), pp. 280-288
[39.]
D.R. Matthews, A.W. Bakst, W.M. Weston, P. Hemyari.
Rosiglitazone decreases insulin resistance and improves beta-cell function in patients with type 2 diabetes.
Diabetologia, 42 (1999), pp. A228
[40.]
B.H.R. Wolffenbuttel, R. Gomis, S. Squatrito, N.P. Jones, R. Patwardhan.
Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in type 2 diabetic patients.
Diabet Med, 17 (2000), pp. 40-47
[41.]
V. Fonseca, J. Rosenstock, R. Patwardhan, A. Salzman.
Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus. A randomized controlled trial.
JAMA, 283 (2000), pp. 1695-1702
[42.]
G. Paolisso, B.V. Howard.
Role of non-esterified fatty acids in the pathogenesis of type 2 diabetes mellitus.
Copyright © 2003. Sociedad Española de Endocrinología y Nutrición
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos