metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Nuevos antibióticos frente a grampositivos: linezolid, tigeciclina, daptomicina...
Información de la revista
Vol. 26. Núm. S2.
Infecciones por grampositivos: perspectivas terapéuticas actuales
Páginas 13-20 (enero 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S2.
Infecciones por grampositivos: perspectivas terapéuticas actuales
Páginas 13-20 (enero 2008)
Infecciones por grampositivos: perspectivas terapéuticas actuales
Acceso a texto completo
Nuevos antibióticos frente a grampositivos: linezolid, tigeciclina, daptomicina, dalbavancina, telavancina, ceftobiprole
New antibiotics against Gram-positive microorganisms: linezolid, tigecycline, daptomycin, dalbavancin, telavancin, ceftobiprole
Visitas
18727
Francisco Soriano
Autor para correspondencia
fsoriano@fjd.es

Correspondencia: Dr. F. Soriano. Departamento de Microbiologia Médica y Quimioterapia Antimicrobiana. Fundación Jiménez Díaz-Capio. Avda. Reyes Católicos, 2. 28040 Madrid. España.
Departamento de Microbiología Médica y Quimioterapia Antimicrobiana. Fundación Jiménez Díaz-Capio. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

En los últimos años se han desarrollado 6 nuevos antibióticos activos frente a bacterias grampositivas, 3 de los cuales ya están disponibles para uso clínico. Uno de estos fármacos es un antibiótico de síntesis completamente nuevo (linezolid). Otro es una lipopeptidolactona, derivado semisintético de una especie de Streptomyces (daptomicina). El resto consiste en modificaciones de tetraciclinas (tigeciclina), glucopéptidos (dalbavancina y telavancina) o cefalosporinas (ceftobiprole). Lo más relevante de estos antibióticos es su actividad frente a organismos grampositivos, incluidos Staphylococcus aureus resistente a la meticilina, S. aureus con sensibilidad intermedia a la vancomicina, y enterococos sensibles y resistentes a la vancomicina. Alguno de ellos (linezolid, tigeciclina y ceftobiprole) posee, además, actividad frente a bacterias gramnegativas. Cuatro de ellos (daptomicina, dalbavancina, telavancina y ceftobiprole) poseen un efecto generalmente bactericida. Todos estos antibióticos se administran por vía intravenosa en infusión continua, aunque linezolid, debido a su excelente biodisponibilidad, puede también administrarse por vía oral. Las dosis recomendadas para el adulto son muy variadas (de 100 a 1.500mg/día), con intervalos que van desde las 12h (linezolid, tigeciclina y ceftobiprole), 24h (daptomicina y telavancina) o 7 días (dalbavancina). Estos antibióticos se eliminan, predominantemente, por vía renal (daptomicina, dalbavancina, telavancina y ceftobiprole) o hepática (linezolid y tigeciclina). Los índices farmacodinámicos que se correlacionan con eficacia terapéutica, teniendo en cuenta siempre la fracción libre del antibiótico, es la tasa área bajo la curva/concentración mínima inhibitoria (CMI) (linezolid, tigeciclina, daptomicina, dalbavancina y telavancina) o el tiempo en que la concentración sérica del antibiótico supera la CMI del patógeno (ceftobiprole).

Palabras clave:
Linezolid
Tigeciclina
Daptomicina
Dalbavancina
Telavancina
Ceftobiprole

Six new antibiotics against Gram-positive bacteria have been developed in the last few years, three of which are already available for clinical use. One of these drugs is a completely new synthetic antibiotic (linezolid). Another is a semisynthetic lipopeptide derived from a species of Streptomyces (daptomycin). The remaining agents are modifications of tetracyclines (tigecycline), glycopeptides (dalbavancin and telavancin) or cephalosporins (ceftobiprole). The most important feature of these antibiotics is their activity against Gram-positive organisms, including methicillin-resistant Staphylococcus aureus, vancomycin-intermediate S. aureus, and vancomycin-resistant and -sensitive enterococci. Some of these agents (linezolid, tigecycline and ceftobiprole) are also active against Gram-negative bacteria. Four of these (daptomycin, dalbavancin, telavancin and ceftobiprole) have a general bactericidal effect. All of these antibiotics are administered intravenously by continuous infusion, although linezolid, due to its excellent bioavailability, can also be administered orally. The recommended doses for adults are highly varied (from 100 to 1500mg/day), with intervals ranging from 12hours (linezolid, tigecycline and ceftobiprole), 24hours (daptomycin and telavancin) to 7 days (dalbavancin). These antibiotics are mainly excreted through the kidney (daptomycin, dalbavancin, telavancin and ceftobiprole) or liver (linezolid and tigecycline). The pharmacodynamic indexes that are correlated with therapeutic efficacy, always bearing in mind the free antibiotic fraction, is the area AUC /MIC ratio (linezolid, tigecycline, daptomycin, dalbavancin and telavancin) or the time in which the serum concentration of the antibiotic is above the MIC of the pathogen (ceftobiprole).

Key words:
Linezolid
Tigecycline
Daptomycin
Dalbavancin
Telavancin
Ceftobiprole
El Texto completo está disponible en PDF
Bibliografía
[1.]
C.W. Ford, G.E. Zurenko, M.R. Barbachyn.
The discovery of linezolid, the first oxazolidinone antibacterial agent.
Curr Drug Tragets Infect Disord, 1 (2001), pp. 181-199
[2.]
C. Pigrau.
Oxazolidinonas y glucopéptidos.
Enferm Infecc Microbiol Clin, 21 (2003), pp. 157-165
[3.]
R.N. Jones, M.G. Stilwell, P.A. Hogan, D.J. Sheehan.
Activity of linezolid against 3,251 strains of uncommonly isolated gram-positive organisms: report from the SENTRY antimicrobial surveillance program.
Antimicrob Agents Chemother, 51 (2007), pp. 1491-1493
[4.]
R.N. Jones, J.E. Ross, T.R. Fritsche, H.S. Sader.
Oxazolidinone susceptibility patterns in 2004: report from the ZyvoxR annual appraisal of potency and spectrum (ZAAPS) program assessing isolates from 16 nations.
J Antimicrob Chemother, 57 (2006), pp. 279-287
[5.]
J.N. Chin, M.J. Rybak, C.M. Cheung, P.B. Savage.
Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus.
Antimicrob Agents Chemother, 51 (2007), pp. 1268-1273
[6.]
M.J. Rybak, E. Hershberger, T. Moldovan, R.G. Grucz.
In vitro activities of daptomycin, vancomycin, linezolid, and quinupristin-dalfopristin against staphylococci and enterococci, including vancomycin-intermediate and resistant strains.
Antimicrob Agents Chemother, 44 (2000), pp. 1062-1066
[7.]
R.J. Wallace Jr, B.A. Brown-Elliott, S.C. Ward, C.J. Crist, L.B. Mann, R.W. Wilson.
Activities of linezolid against rapidly growing mycobacteria.
Antimicrob Agents Chemother, 45 (2001), pp. 764-767
[8.]
L. Alcalá, M.J. Ruiz-Serrano, C. Pérez Fernández Turegano, D. García de Viedma, M. Díaz-Infantes, M. Marin-Arriaza, et al.
In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs.
Antimicrob Agents Chemother, 47 (2003), pp. 416-417
[9.]
E.J. Goldstein, D.M. Citron, C.V. Merriam.
Linezolid activity compared to those of selected macrolides and other agents against aerobic and anaerobic pathogens isolated from soft tissue bite infections in humans.
Antimicrob Agents Chemother, 43 (1999), pp. 1469-1474
[10.]
V.G. Meka, H.S. Gold.
Antimicrobial resistance to linezolid.
Clin Infect Dis, 39 (2004), pp. 1010-1015
[11.]
A.P. MacGowan.
Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with gram-positive infections.
J Antimicrob Chemother, 51 (2003), pp. 17-25
[12.]
EUCAST technical note on linezolid.
Clin Microbiol Infect, 12 (2006), pp. 1243-1245
[13.]
D. Andes, M.L. van Ogtrop, J. Peng, W.A. Craig.
In vivo pharmacodynamics of a new oxazolidinone (linezolid).
Antimicrob Agents Chemother, 46 (2002), pp. 3484-3489
[14.]
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; seventeen informational supplement. Wayne: CLSI document M100-S17; 2007.
[15.]
G.A. Noskin.
Tigecycline: a new glycylcycline for treatment of serious infections.
Clin Infect Dis, 41 (2005), pp. 303-314
[16.]
J. Bergeron, M. Ammirati, D. Danley, L. James, M. Norcia, J. Retsema, et al.
Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)- and Tet(O)-mediated ribosomal protection.
Antimicrob Agents Chemother, 40 (1996), pp. 2226-2228
[17.]
D.J. Hoban, S.K. Bouchillon, B.M. Johnson, J.L. Johnson, M.J. Dowzicky.
In vitro activity of tigecycline against 6792 gram-negative and gram-positive clinical isolates from the global Tigecycline Evaluation and Surveillance Trial (TEST Program, 2004).
Diagn Microbiol Infect Dis, 52 (2005), pp. 215-227
[18.]
R.J. Wallace Jr, B.A. Brown-Elliott, C.J. Crist, L. Mann, R.W. Wilson.
Comparison of the in vitro activity of the glycylcycline tigecycline (formerly GAR-936) with those of tetracycline, minocycline, and doxycycline against isolates of nontuberculous mycobacteria.
Antimicrob Agents Chemother, 46 (2002), pp. 3164-3167
[19.]
E.JC. Goldstein, D.M. Citron, C.V. Merriam, Y. Warren, K. Tyrrell.
Comparative in vitro activities of GAR-936 against aerobic and anaerobic animal and human bite wound pathogens.
Antimicrob Agents Chemother, 44 (2000), pp. 2747-2751
[20.]
T.R. Fritsche, J.T. Kirby, R.N. Jones.
In vitro activity of tigecycline (GAR-936) tested against 11,859 recent clinical isolates associated with community-acquired respiratory tract and gram-positive cutaneous infections.
Diagn Microbiol Infect Dis, 49 (2004), pp. 201-209
[21.]
H.S. Sader, R.N. Jones, M.G. Stilwell, M.J. Dowzicky, T.R. Fritsche.
Tigecycline activity tested against 26,474 bloodstream infection isolates: a collection from 6 continents.
Diagn Microbiol Infect Dis, 52 (2005), pp. 181-186
[22.]
P.J. Petersen, P. Labthavikul, C.H. Jones, P.A. Bradford.
In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis.
J Antimicrob Chemother, 57 (2006), pp. 573-576
[23.]
P.A. Bradford, P.J. Petersen, M. Young, C.H. Jones, M. Tischler, J. O’Connell.
Tigecycline MIC testing by broth dilution requires use of fresh medium or addition of the biocatalytic oxygen-reducing reagent oxyrase to standardize the test method.
Antimicrob Agents Chemother, 49 (2005), pp. 3903-3909
[24.]
G.E. Stein, W.A. Craig.
Tigecycline: a critical analysis.
Clin Microbiol Infect, 43 (2006), pp. 518-524
[25.]
K.A. Rodvold, M.H. Gotfried, M. Cwik, J.M. Korth-Bradley, G. Dukart, E.J. Ellis-Grosse.
Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose.
J Antimicrob Chemother, 58 (2006), pp. 1221-1229
[26.]
EUCAST technical note on tygecycline.
Clin Microbiol Infect, 12 (2006), pp. 1147-1149
[27.]
J.A. Silverman, N.G. Perlmutter, H.M. Shapiro.
Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus.
Antimicrob Agents Chemother, 47 (2003), pp. 2538-2544
[28.]
H.S. Sader, J.M. Streit, T.R. Fritsche, R.N. Jones.
Antimicrobial susceptibility of gram-positive bacteria isolated from European medical centres: results of the daptomycin surveillance programme (2002-2004).
Clin Microbiol Infect, 12 (2006), pp. 844-852
[29.]
J.M. Streit, R.N. Jones, H.S. Sader.
Daptomycin activity and spectrum: a worldwide sample of 6737 clinical gram-positive organisms.
J Antimicrob Chemother, 53 (2004), pp. 669-674
[30.]
B. Wiedemann.
Test results: characterising the antimicrobial activity of daptomycin.
Clin Microbiol Infect, 12 (2006), pp. 9-14
[31.]
L. Cui, E. Tominaga, H. Neoh, K. Hiramatsu.
Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus.
Antimicrob Agents Chemother, 50 (2006), pp. 1079-1082
[32.]
J.H. Jorgensen, S.A. Crawford, C.C. Kelly, J.E. Patterson.
In vitro activity of daptomycin against vancomycin-resistant enterococci of various Van types and comparison of susceptibility testing methods.
Antimicrob Agents Chemother, 47 (2003), pp. 3760-3763
[33.]
P.C. Fuchs, A.L. Barry, S.D. Brown.
Evaluation of daptomycin susceptibility testing by Etest and the effect of different batches of media.
J Antimicrob Chemother, 48 (2001), pp. 557-561
[34.]
B.H. Dvorchik, D. Brazier, M.F. DeBruin, R.D. Arbeit.
Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects.
Antimicrob Agents Chemother, 47 (2003), pp. 1318-1323
[35.]
M. Benvenuto, D.P. Benziger, S. Yankelev, G. Vigliani.
Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers.
Antimicrob Agents Chemother, 50 (2006), pp. 3245-3249
[36.]
R. Wise, T. Gee, J.M. Andrews, B. Dvorchik, G. Marshall.
Pharmacokinetics and inflammatory fluid penetration of intravenous daptomycin in volunteers.
Antimicrob Agents Chemother, 46 (2002), pp. 31-33
[37.]
H.S.M. Ammerlaan, M.J.M. Bonten.
Daptomycin: graduation day.
Clin Microbiol Infect, 12 (2006), pp. 22-28
[38.]
B.L. Lee, M. Sachdeva, H.F. Chambers.
Effect of protein binding of daptomycin on MIC and antibacterial activity.
Antimicrob Agents Chemother, 35 (1991), pp. 2505-2508
[39.]
M.W. Garrison, K. Vance-Bryan, T.A. Larson, J.P. Toscano, J.C. Rotschafer.
Assessment of effects of protein binding on daptomycin and vancomycin killing of Staphylococcus aureus by using an in vitro pharmacodynamic model.
Antimicrob Agents Chemother, 34 (1990), pp. 1925-1931
[40.]
J.A. Silverman, L.I. Mortin, A.D.G. VanPraagh, T. Li, J. Alder.
Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact.
J Infect Dis, 191 (2005), pp. 2149-2152
[41.]
N. Safdar, D. Andes, W.A. Craig.
In vivo pharmacodynamic activity of daptomycin.
Antimicrob Agents Chemother, 48 (2004), pp. 63-68
[42.]
EUCAST technical note on daptomycin.
Clin Microbiol Infect, 12 (2006), pp. 599-601
[43.]
J.L. Pace, G. Yang.
Glycopeptides: update on an old successful antibiotic class.
Biochem Pharmacol, 71 (2006), pp. 968-980
[44.]
B.P. Goldstein, D.C. Draghi, D.J. Sheehan, P. Hogan, D.F. Sahm.
Bactericidal activity and resistance development profiling of dalbavancin.
Antimicrob Agents Chemother, 51 (2007), pp. 1150-1154
[45.]
J.M. Streit, T.R. Fritsche, H.S. Sader, R.N. Jones.
Worldwide assessment of dalbavancin activity and spectrum against over 6 000 clinical isolates.
Diagn Microbiol Infect Dis, 48 (2004), pp. 137-143
[46.]
S. Lopez, C. Hackbarth, G. Romanò, J. Trias, D. Jabes, B.P. Goldstein.
In vitro antistaphylococcal activity of dalbavancin, a novel glycopeptide.
J Antimicrob Chemother, 55 (2005), pp. 21-24
[47.]
J.M. Streit, H.S. Sader, T. Fritsche, R.N. Jones.
Dalbavancin activity against selected populations of antimicrobial-resistant gram-positive pathogens.
Diagn Microbiol Infect Dis, 53 (2005), pp. 307-310
[48.]
E.J. Goldstein, D.M. Citron, C.V. Meriam, Y.A. Warren, K.L. Tyrrell, H.T. Fernández.
In vitro activities of the new semisynthetic glycopeptide telavancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic gram-positive species and Corynebacterium spp.
Antimicrob Agents Chemother, 48 (2004), pp. 2149-2152
[49.]
A. King, I. Phillips, K. Kaniga.
Comparative in vitro activity of telavancin (TD-6424), a rapidly bactericidal, concentration-dependent anti-infective with multiple mechanisms of action against gram-positive bacteria.
J Antimicrob Chemother, 53 (2004), pp. 797-803
[50.]
J.L. Pace, K. Krause, D. Johnston, D. Debabov, T. Wu, L. Farrington, et al.
In vitro activity of TD-6424 against Staphylococcus aureus.
Antimicrob Agents Chemother, 47 (2003), pp. 3602-3604
[51.]
M. Barcia-Macay, S. Lemaire, M-P. Minueto-Leclerq, P.M. Tulkens, F. Van Bambeke.
Evaluation of the extracellular and intracellular activities (human THP-1 macrophages) of telavancin versus vancomycin against methicillinsusceptible, methicillin-resistant, vancomycin-intermediate and vancomycin- resistant Staphylococcus aureus.
J Antimicrob Chemother, 58 (2006), pp. 1177-1184
[52.]
M.B. Dorr, D. Jabes, M. Cavaleri, J. Dowell, G. Mosconi, A. Malabarba, et al.
Human pharmacokinetics and rationale for once-weekly dosing of dalbavancin, a semi-synthetic glycopeptide.
J Antimicrob Chemother, 55 (2005), pp. 25-30
[53.]
E. Seltzer, M.B. Dorr, B.P. Goldstein, M. Perry, J.A. Dowell, T. Henkel, et al.
Once-weekly dalbavancin versus standard-of-care antimicrobial regimens for treatment of skin and soft-tissue infections.
Clin Infect Dis, 37 (2003), pp. 1298-1303
[54.]
D. Andes, W.A. Craig.
In vivo pharmacodynamic activity of the glycopeptide, dalbavancin.
Antimicrob Agents Chemother, 51 (2007), pp. 1633-1642
[55.]
M.E. Stryjewski, V.H. Chu, W.D. O’Riordan, B.L. Warrenn, L.M. Dunbar, D.M. Young, et al.
Telavancin versus standard therapy for treatment of complicated skin and skin structure infections caused by gram-positive bacteria: FAST 2 study.
Antimicrob Agents Chemother, 50 (2006), pp. 862-867
[56.]
M.E. Stryjewski, W.D. O’Riordan, W.K. Lau, F.D. Pien, L.M. Dunbar, M. Vallee, et al.
Telavancin versus standard therapy for treatment of complicated skin and soft-tissue infections due to gram-positive bacteria.
Clin Infect Dis, 40 (2005), pp. 1601-1607
[57.]
J.P. Shaw, J. Seroogy, K. Kaniga, D.L. Higgins, M. Kitt, S. Barriere.
Pharmacokinetics, serum inhibitory and bactericidal activity and safety of telavancin in healthy subjects.
Antimicrob Agents Chemother, 49 (2005), pp. 195-201
[58.]
H.K. Sun, K. Duchin, C.H. Nightingale, P. Shaw J-, J. Seroogy, P. Nicolau.
Tissue penetration of telavancin after intravenous administration in healthy subjects.
Antimicrob Agents Chemother, 50 (2006), pp. 788-790
[59.]
S.S. Hegde, N. Reyes, T. Wiens, N. Vanasse, R. Skinner, J. McCullough, et al.
Pharmacodynamics of telavancin (TD-6424), a novel bactericidal agent, against gram-positive bacteria.
Antimicrob Agents Chemother, 48 (2004), pp. 3043-3050
[60.]
J.W. Mouton, A. Schmitt-Hoffmann, S. Shapiro, N. Nashed, N.C. Punt.
Use of Monte Carlo simulations to select therapeutic doses and provisional breakpoints of BAL9141.
Antimicrob Agents Chemother, 48 (2004), pp. 1713-1718
[61.]
T. Bogdanovich, L.M. Ednie, S. Shapiro, P.C. Appelbaum.
Antistaphylococcal activity of ceftobiprole, a new broad-spectrum cephalosporin.
Antimicrob Agents Chemother, 49 (2005), pp. 4210-4219
[62.]
R.N. Jones, L.M. Deshpande, A.H. Mutnick, D.J. Biedenbach.
In vitro evaluation of BAL9141, a novel parenteral cephalosporin active against oxacillin-resistant staphylococci.
J Antimicrob Chemother, 50 (2002), pp. 915-932
[63.]
P. Hebeisen, I. Heinze-Krauss, P. Angehrn, P. Hohl, M.G.P. Page, R.L. Then.
In vitro and in vivo properties of Ro 63-9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci.
Antimicrob Agents Chemother, 45 (2001), pp. 825-836
[64.]
A. Schmitt-Hoffmann, L. Nyman, B. Roos, M. Schleimer, J. Sauer, N. Nashed, et al.
Multiple-dose pharmacokinetics and safety of a novel broad-spectrum cephalosporin (BAL5788) in healthy volunteers.
Antimicrob Agents Chemother, 48 (2004), pp. 2576-2580
[65.]
F. Soriano, R. Fernández-Roblas, R. Calvo, G. García-Calvo.
In vitro susceptibilities of aerobic and facultative non-spore-forming gram-positive bacilli to HMR 3647 (RU 66647) and 14 other antimicrobials.
Antimicrob Agents Chemother, 42 (1998), pp. 1028-1033
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos