metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Reacción en cadena de la polimerasa (PCR) a tiempo real
Información de la revista
Vol. 22. Núm. 5.
Páginas 299-305 (mayo 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 22. Núm. 5.
Páginas 299-305 (mayo 2004)
Acceso a texto completo
Reacción en cadena de la polimerasa (PCR) a tiempo real
Real-time PCRss
Visitas
79728
Josep Costa1
Autor para correspondencia
costa@medicina.ub.es

Dr. J. Costa. Servicio de Microbiología. Hospital Clínic i Provincial. Villarroel, 180. 08025 Barcelona. España.
Servicio de Microbiología. Hospital Clínic i Provincial. Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Hoy en día, la reacción en cadena de la polimerasa (PCR) se utiliza normalmente en la rutina asistencial de la mayoría de nuestros laboratorios, pero su empleo se ha limitado, con pocas excepciones, al campo de la virología y en especial a un reducido grupo de virus con gran interés económico, para los que se dispone de ensayos comerciales bien estandarizados. Por diversas razones, la PCR convencional se ha implementado poco en el diagnóstico de otras muchas enfermedades infecciosas a pesar de aportar indudables ventajas. La PCR a tiempo real combinada con los nuevos sistemas automáticos para la purificación de ácidos nucleicos, ofrece una plataforma ideal para el desarrollo de una gran variedad de pruebas moleculares para la identificación y cuantificación de los agentes infecciosos de interés clínico. Debido a sus indudables ventajas, como la facilidad de empleo, la mayor rapidez o el menor riesgo de contaminación, la PCR a tiempo real, irá reemplazando la PCR convencional y se extenderá a un amplio abanico de aplicaciones microbiológicas.

Palabras clave:
PCR a tiempo real
Diagnóstico molecular
Sondas fluorogénicas

PCR based assays are currently used routinely in most microbiology laboratories. But, with few exceptions, they are restricted to the field of virology, especially to a limited number of viral targets with important economical interest for which commercially well standardized assays are available. For several reasons, it has had a poor implementation of the PCR assays into routine diagnostics for other infectious diseases despite they are advantageous. Combined with automated sample isolation of nucleic acids, real-time PCR gives an ideal platform for the development of molecular assays for a wide range of infectious agents with clinical interest. Because of its advantages, as simplicity, rapidity and minor risk of contamination, real-time PCR will go replace conventional PCR assays and its use will extend to a wide range of applications in clinical microbiology.

Key words:
Real-time PCR
Molecular diagnostics
Fluorogenic probes
El Texto completo está disponible en PDF
Bibliografía
[1.]
R. Higuchi, S. Kwok.
Avoiding false positives with PCR.
Nature, 339 (1989), pp. 237-238
[2.]
G.D. Cimino, K.C. Metchette, J.W. Tessman, J.E. Hearst, S.T. Isaacs.
Post-PCR sterilization: a method to control carryover contamination for the PCR.
Nucleic Acids Res, 19 (1991), pp. 99-107
[3.]
M.C. Longo, M.S. Berninger, J.L. Hartley.
Use of Uracil DNA glycosilase to control carryover contamination in PCR.
Gene, 93 (1990), pp. 125-128
[4.]
R. Higuchi, C. Fokler, G. Dollinger, R. Watson.
Kinetic PCR analysis: Real-time monitoring of DNA amplification reactions.
Bio/Technology, 11 (1993), pp. 1026-1030
[5.]
T. Moretti, B. Koons, B. Budowle.
Enhancement of PCR amplification yield and specificity using AmpliTaq Gold DNA polymerase.
Biotechniques, 25 (1998), pp. 716-722
[6.]
D.E. Kellogg, I. Rybalkin, S. Chen, N. Mukhamedova, T. Vlasic, et al.
TaqStart antibody: “hot start” PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase.
Biotechniques, 16 (1994), pp. 1134-1137
[7.]
P.M. Holland, R.D. Abramson, R. Watson, D.H. Gelfand.
Detection of specific polymerase chin reaction product by utilizing the 5’-3’ exonuclease activity of Thermus aquaticus DNA polymerase.
Proceedings of The National Academy of Sciences USA, 88 (1991), pp. 7276-7280
[8.]
S. Tyagi, F.R. Kramer.
Molecular beacons: Probes that fluoresce upon hibridization.
Nat Biotechnol, 14 (1996), pp. 303-308
[9.]
H.G. Niesters.
Quantitation of viral load using real-time amplification techniques.
Methods, 25 (2001), pp. 414-429
[10.]
I.M. Mackay, K.E. Arden, A. Nitsche.
Real-time PCR in virology.
Nucleic Acids Res, 30 (2002), pp. 1292-1305
[11.]
H.G. Niesters.
Clinical virology in real time.
J Clin Virol, 25 (2002), pp. S3-S12
[12.]
R.C. Maibach, M. Altwegg.
Cloning and sequencing an unknown gene of Tropheryma whipplei and development of two LightCycler PCR assays.
Diagn Microbiol Infect Dis, 46 (2003), pp. 181-187
[13.]
L. Lind-Brandberg, C. Welinder-Olsson, T. Lagergard, J. Taranger, B. Trollfors, G. Zackrisson.
Evaluation of PCR for diagnosis of Bordetella pertussis and Bordetella parapertussis infections.
J Clin Microbiol, 36 (1998), pp. 679-683
[14.]
Z. Zeaiter, P.E. Fournier, G. Greub, D. Raoult.
Diagnosis of Bartonella endocarditis by a real-time nested PCR assay using serum.
J Clin Microbiol, 41 (2003), pp. 919-925
[15.]
N. Miller, T. Cleary, G. Kraus, A.K. Young, G. Spruill, H.J. Hnatyszyn.
Rapid and specific detection of Mycobacterium tuberculosis from acid-fast bacillus smear- positive respiratory specimens and BacT/ALERT MP culture bottles by using fluorogenic probes and real-time PCR.
J Clin Microbiol, 40 (2002), pp. 4143-4147
[16.]
J. Loeffler, N. Henke, H. Hebart, D. Schmidt, L. Hagmeyer, V. Schumacher, et al.
Quantification of fungal DNA by using fluorescence resonance energy transfer and the Light Cycler system.
J Clin Microbiol, 38 (2000), pp. 586-590
[17.]
F. Delhommeau, F. Forestier.
Quantification of Toxoplasma gondii in amniotic fluid by rapid cycle real-time PCR.
Rapid Cycle Real-Time PCR.Methods and Applications. Microbiology and Food Analysis, pp. 133-138
[18.]
D. Ke, C. Ménard, F.J. Picard, M. Boissinot, M. Ouellette, P.H. Roy, et al.
Development of conventional and real-time PCR assays for the rapid detection of group B streptococci.
Clin Chem, 46 (2000), pp. 324-331
[19.]
B.E. Ostrowsky, W.E. Trick, A.H. Sohn, S.B. Quirk, S. Holt, L.A. Carson, et al.
Control of vancomycin-resistant enterococcus in health care facilities in a region.
N Eng J Med, 344 (2001), pp. 1427-1434
[20.]
U. Reischl, H.J. Linde, M. Metz, B. Leppmeyer, N. Lehn.
Rapid identification of methicillin-resistant Staphylococcus aureus and simultaneous species confirmation using real-time fluorescence PCR.
J Clin Microbiol, 38 (2000), pp. 2429-2433
[21.]
M.J. Torres, A. Criado, J.C. Palomares, J. Aznar.
Use of real-time PCR and fluorimetry for rapid detection of rafampin and isoniazid resistance-associated mutation in Mycobacterium tuberculosis.
J Clin Microbiol, 38 (2000), pp. 3194-3199
[22.]
S.A. Whalley, D. Brown, C.G. Teo, G.M. Dusheiko, N.A. Saunders.
Monitoring the emergence of hepatitis B virus polymerase gene variants during lamivudine therapy using the LyghtCycler.
J Clin Microbiol, 39 (2001), pp. 1456-1459
Copyright © 2004. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos