metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica Utilidad de las técnicas de biología molecular en el diagnóstico de las infec...
Información de la revista
Vol. 26. Núm. S9.
Utilidad de la biología molecular en el diagnóstico microbiológico
Páginas 42-49 (julio 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S9.
Utilidad de la biología molecular en el diagnóstico microbiológico
Páginas 42-49 (julio 2008)
Acceso a texto completo
Utilidad de las técnicas de biología molecular en el diagnóstico de las infecciones de transmisión sexual y otras infecciones genitales
Utility of molecular biology techniques in the diagnosis of sexually transmitted diseases and genital infections
Visitas
7144
Luis Otero Guerraa, José Antonio Lepe Jiménezb, María Antonia Blanco Galánc, Javier Aznar Martínb,d, Fernando Vázquez Valdése,
Autor para correspondencia
fvazquez@uniovi.es

Correspondencia: Servicio de Microbiología. Hospital Monte Naranco. Avda. Dres. Fernández-Vega, 107. 33012 Oviedo. España.
a Servicio de Microbiología. Hospital de Cabueñes. Gijón. Asturias. España
b Servicio de Microbiología. Hospital Universitario Virgen del Rocío. Sevilla. España
c Unidad de Microbiología. Hospital Santa Cristina. Madrid. España
d Departamento de Microbiología. Facultad de Medicina. Sevilla. España
e Servicio de Microbiología. Hospital Monte Naranco. Área de Microbiología. Facultad de Medicina. Oviedo. Asturias. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Históricamente, el diagnóstico de las infecciones de transmisión sexual ha sido difícil. La introducción en el diagnóstico microbiológico de las técnicas de biología molecular y su aplicación a muestras no invasivas ha permitido importantes avances en su diagnóstico. En general, la detección de Neisseria gonorrhoeae mediante técnicas de biología molecular proporciona un diagnóstico presuntivo y requiere confirmación por cultivo en zonas de baja prevalencia. Para Chlamydia trachomatis, estas técnicas se consideran como las más sensibles y específicas, tanto para estudios de cribado poblacional, como para el diagnóstico de pacientes sintomáticos. El diagnóstico de Mycoplasma genitalium por cultivo es muy lento, por ello, las técnicas moleculares son las únicas que pueden aportar información diagnóstica relevante. Para Treponema pallidum, las técnicas moleculares pueden aportar ventajas en el diagnóstico directo de la infección. Respecto a la donovaniosis, las técnicas moleculares no están establecidas para el diagnóstico sistemático, aunque se recomiendan en manos expertas. En el caso de Haemophilus ducreyi, las dificultades del cultivo y su baja sensibilidad aconsejan el uso de métodos moleculares. En el herpes genital, las técnicas moleculares han comenzado a recomendarse para el diagnóstico sistemático y pueden convertirse en la técnica de referencia en poco tiempo. Para otras infecciones genitales, como vaginosis bacteriana, vulvovaginitis candidiásica y tricomoniasis, los métodos moleculares para el diagnóstico están poco establecidos. Respecto a las verrugas genitales, las técnicas de cribado y genotipado disponibles para muestras endocervicales podrían utilizarse para ciertas poblaciones, aunque no se han validado para este cometido.

Palabras clave:
Biología molecular
Enfermedades de transmisión sexual
Gonococia
Neisseria gonorrhoeae
Chlamydia trachomatis
Herpes genital

Historically, the diagnosis of sexually transmitted diseases (STDs) has been difficult. The introduction of molecular biology techniques in microbiological diagnosis and their application to non-invasive samples has produced significant advances in the diagnosis of these diseases. Overall, detection of Neisseria gonorrhoeae by molecular biology techniques provides a presumptive diagnosis and requires confirmation by culture in areas with a low prevalence. For Chlamydia trachomatis infections, these techniques are considered to be the most sensitive and specific procedures for mass screening studies, as well as for the diagnosis of symptomatic patients. Diagnosis of Mycoplasma genitalium infection by culture is very slow and consequently molecular techniques are the only procedures that can provide relevant diagnostic information. For Treponema pallidum, molecular techniques can provide direct benefits in the diagnosis of infection. Molecular techniques are not established for the routine diagnosis of donovanosis, but can be recommended when performed by experts. Molecular methods are advisable in Haemophilus ducreyi, because of the difficulties of culture and its low sensitivity. In genital herpes, molecular techniques have begun to be recommended for routine diagnosis and could soon become the technique of choice. For other genital infections, bacterial vaginosis, vulvovaginal candidosis and trichomoniasis, diagnosis by molecular methods is poorly established. With genital warts, techniques available for screening and genotyping of endocervical samples could be used for certain populations, but are not validated for this purpose.

Key words:
Molecular biology
Sexually transmitted diseases
Gonorrhoea
Neisseria gonorrhoeae
Chlamydia trachomatis
Herpes genitalis
El Texto completo está disponible en PDF
Bibliografía
[1.]
Centers for Disease Control and Prevention. Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae Infections- 2000. MMWR. 2002;51(N. RR-15):1-38.
[2.]
D.W. Smith, J.W. Tapsall, G. Lum.
Guidelines for the use and interpretation of nucleic acid and detection tests for Neisseria gonorrhoeae in Australia: A position paper on behalf of the Public Health Laboratory Network.
Clin Infect Dis, 29 (2005), pp. 358-365
[3.]
C. Bignell, C.A. Ison, E. Jungmann.
Gonorrhoea.
Sex Transm Infect, 82 (2006), pp. iv6-iv9
[4.]
K.A. Mangold, M. Regner, M. Tajuddin, A.M. Tajuddin, L. Jennings, H. Du, et al.
Neisseria species identification assay for the confirmation of Neisseria gonorrhoeae-positive results of the COBAS Amplicor PCR.
J Clin Microbiol, 45 (2007), pp. 1403-1409
[5.]
N. Bilek, I.M. Martin, G. Bell, G.R. Kinghorn, C.A. Ison, B.G. Spratt.
Concordance between Neisseria gonorrhoeae genotypes recovered from known sexual contacts.
J Clin Microbiol, 45 (2007), pp. 3564-3567
[6.]
F. Vernel-Pauillac, F. Merien.
A novel real-time duplex PCR assay for detecting penA and ponA genotypes in Neisseria gonorrhoeae: Comparison with phenotypes determined by the E-test.
Clin Chem, 52 (2006), pp. 2294-2296
[7.]
F. Vernel-Pauillac, V. Falcot, D. Whiley, F. Merien.
Rapid detection of a chromosomally mediated penicillin resistance-associated ponA mutation in Neisseria gonorrhoeae using a real-time PCR assay.
FEMS Microbiol Lett, 255 (2006), pp. 66-74
[8.]
M.J. Siedner, M. Pandori, L. Castro, P. Barry, W.L. Whittington, S. Liska, et al.
Real-time PCR assay for detection of quinolone-resistant Neisseria gonorrhoeae in urine samples.
J Clin Microbiol, 45 (2007), pp. 1250-1254
[9.]
D.J. Jespersen, K.S. Flatten, M.F. Jones, T.F. Smith.
Prospective comparison of cell cultures and nucleic acid amplification tests for laboratory diagnosis of Chlamydia trachomatis infections.
J Clin Microbiol, 43 (2005), pp. 5324-5326
[10.]
L.A. Cosentino, D.V. Landers, S.L. Hillier.
Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by strand displacement amplification and relevance of the amplification control for use with vaginal swab specimens.
J Clin Microbiol, 41 (2003), pp. 3592-3596
[11.]
M.A. Shafer, J. Moncada, C.B. Boyer, K. Betsinger, S.D. Flinn, J. Schachter.
Comparing first-void urine specimens, self-collected vaginal swabs, and endocervical specimens to detect Chlamydia trachomatis and Neisseria gonorrhoeae by a nucleic acid amplification test.
J Clin Microbiol, 41 (2003), pp. 4395-4399
[12.]
J. Schachter, W.M. McCormack, M.A. Chernesky, D.H. Martin, B. Van Der Pol, P.A. Rice, et al.
Vaginal swabs are appropriate specimens for diagnosis of genital tract infection with Chlamydia trachomatis.
J Clin Microbiol, 41 (2003), pp. 3784-3789
[13.]
S. Chong, D. Jang, X. Song, J. Mahony, A. Petrich, P. Barriga, et al.
Specimen processing and concentration of Chlamydia trachomatis added can influence false-negative rates in the LCx assay but not in the APTIMA Combo 2 assay when testing for inhibitors.
J Clin Microbiol, 41 (2003), pp. 778-782
[14.]
F. Vázquez, L. Otero, J. Ordás, M.L. Junquera, J.A. Varela.
Actualización en infecciones de transmisión sexual: epidemiología, diagnóstico y tratamiento.
Enferm Infecc Microbiol Clin, 22 (2004), pp. 392-411
[15.]
A. Herring, J. Richens.
Lymphogranuloma venereum.
Sex Transm Infect, 82 (2006), pp. S23-S225
[16.]
Results of a Europe-wide investigation to asses the presence of a new variant of Chlamydia trachomatis. Euro Surveill. 2007;12(10).
[17.]
D. Baud, L. Regan, G. Greub.
Emerging role of Chlamydia and Chlamydia-like organism in adverse pregnancy outcomes.
Current Opinion Infect Dis, 21 (2008), pp. 70-76
[18.]
J.S. Jensen, M.B. Borre, B. Dohn.
Detection of Mycoplasma genitalium by PCR amplification of the 16S rRNA gene.
J Clin Microbiol, 41 (2003), pp. 261-266
[19.]
H.F. Svenstrup, J.S. Jensen, E. Björnelius, P. Lidbrink, S. Birkelund, G. Christiansen.
Development of a quantitative real-time PCR assay for detection of Mycoplasma genitalium.
J Clin Microbiol, 43 (2005), pp. 3121-3128
[20.]
J.S. Jensen, S.A. Uldum, J. Søndergård-Andersen, J. Vuust, K. Lind.
Polymerase chain reaction for detection of Mycoplasma genitalium in clinical samples.
J Clin Microbiol, 29 (1991), pp. 46-50
[21.]
J.K. Wroblewski, L.E. Manhart, K.A. Dickey, M.K. Hudspeth, P.A. Totten.
Comparison of transcription-mediated amplification and PCR assay results for various genital specimen types for detection of Mycoplasma genitalium.
J Clin Microbiol, 44 (2006), pp. 3306-3312
[22.]
A. Centurion-Lara, C. Castro, J.M. Shaffer, W.C. Van Voorhis, C.M. Marra, S.A. Lukehart.
Detection of Treponema pallidum by a sensitive reverse transcriptase PCR.
J Clin Microbiol, 35 (1997), pp. 1348-1352
[23.]
H. Liu, B. Rodes, C.Y. Chen, B. Steiner.
New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene.
J Clin Microbiol, 39 (2001), pp. 1941-1946
[24.]
D.E. Leslie, F. Azzato, T. Karapanagiotidis, J. Leydon, J. Fyfe.
Development of a real-time PCR assay to detect Treponema pallidum in clinical specimens and assessment of the assay's performance by comparison with serological testing.
J Clin Microbiol, 45 (2007), pp. 93-96
[25.]
K.A. Orle, C.A. Gates, D.H. Martin, B.A. Body, J.B. Weiss.
Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers.
J Clin Microbiol, 34 (1996), pp. 49-54
[26.]
V. Pope, K. Fox, H. Liu, A.A. Marfin, P. Leone, A.C. Seña, et al.
Molecular subtyping of Treponema pallidum from North and South Carolina.
Clin Microbiol, 43 (2005), pp. 3743-3746
[27.]
M.W. Pandori, C. Gordones, L. Castro, J. Engelman, M. Siedner, S. Lukehart, et al.
Detection of azithromycin resistance in Treponema pallidum by realtime PCR.
J Antimicrob Agents Chemother, 51 (2007), pp. 3425-3430
[28.]
F. Vázquez, J.A. Lepe, L. Otero, M.A. Blanco, J. Aznar.
Diagnóstico microbiológico de las infecciones de transmisión sexual (2007).
Enferm Infecc Microbiol Clin, 26 (2008), pp. 32-37
[29.]
J. Richens.
Donovanosis (granuloma inguinale).
Sex Transm Infect, 82 (2006), pp. S21-S22
[30.]
I.M. Mackay, G. Harnett, N. Jeoffreys, I. Bastian, K.S. Sriprakash, D. Siebert, et al.
Detection and discrimination of herpes simplex viruses, Haemophilus ducreyi, Treponema pallidum, and Calymmatobacterium (Klebsiella) granulomatis from genital ulcers.
Clin Infect Dis, 42 (2006), pp. 1431-1438
[31.]
J. Carter, F.J. Bowden, K.S. Sriprakash, I. Bastian, D.J. Kemp.
Diagnostic polymerase chain reaction for donovanosis.
Clin Infect Dis, 28 (1999), pp. 1168-1169
[32.]
S.R. Johnson, D.H. Martin, C. Cammarata, S.A. Morse.
Alterations in sample preparation increase sensitivity of PCR assay for diagnosis of chancroid.
J Clin Microbiol, 33 (1995), pp. 1036-1038
[33.]
P.A. Totten, J.M. Kuypers, C.Y. Chen, M.J. Alfa, L.M. Parsons, S.M. Dutro, et al.
Etiology of genital ulcer disease in Dakar, Senegal, and comparison of PCR and serologic assays for detection of Haemophilus ducreyi infection.
J Clin Microbiol, 38 (2000), pp. 268-273
[34.]
K. Patterson, B. Olsen, C. Thomas, D. Norn, M. Tam, C. Elkins.
Development of a rapid immunodiagnostic test for Haemophilus ducreyi.
J Clin Microbiol, 40 (2002), pp. 3694-3702
[35.]
A. Scoular, G. Gillespie, W.F. Carman.
Polymerase chain reaction for diagnosis of genital herpes in a genitourinary medicine clinic.
Sex Transm Infect, 78 (2002), pp. 21-25
[36.]
A. Wald, M.L. Huang, D. Carrell, S. Selke, L. Corey.
Polymerase chain reaction for detection of herpes simplex virus (HSV) DNA on mucosal surfaces: comparison with HSV isolation in cell culture.
J Infect Dis, 188 (2003), pp. 1345-1351
[37.]
M.J. Slomka, L. Emery, P.E. Munday, M. Moulsdale, D.W. Brown.
A comparison of PCR with virus isolation and direct antigen detection for diagnosis and typing of genital herpes.
J Med Virol, 55 (1998), pp. 177-183
[38.]
M. Koenig, K.S. Reynolds, W. Aldous, M. Hickman.
Comparison of Light-Cycler PCR, enzyme immunoassay, and tissue culture for detection of herpes simplex virus.
Diagn Microbiol Infect Dis, 40 (2001), pp. 107-110
[39.]
G.J. Van Doornum, J. Guldemeester, A.D. Osterhaus, H.G. Niesters.
Diagnosing herpesvirus infections by real-time amplification and rapid culture.
J Clin Microbiol, 41 (2003), pp. 576-580
[40.]
A.S. Magaret, A. Wald, M. Huang, S. Selke, L. Corey.
Optimizing PCR Positivity Criterion for Detection of Herpes Simples Virus DNA on Skin and Mucosa.
J Clin Microbiol, 45 (2007), pp. 1618-1620
[41.]
M. Ramaswamy, C. McDonald, M. Smith, D. Thomas, S. Maxwell, M. Tenant-Flowers, et al.
Diagnosis of genital herpes by real time PCR in routine clinical practice.
Sex Transm Infect, 80 (2004), pp. 406-410
[42.]
A. Singh, J. Preiksaitis, A. Ferenczy, B. Romanowski.
The laboratory diagnosis of herpes simplex virus infections.
Can J Infect Dis Med Microbiol, 16 (2005), pp. 92-98
[43.]
N.C. Issa, M.J. Espy, J.R. Uhl, T.F. Smith.
Sequencing and Resolution of Amplified Herpes Simplex Virus DNA with Intermediate Melting Curves as Genotype 1 or 2 by LightCycler PCR Assay.
J Clin Microbiol, 43 (2005), pp. 1843-1845
[44.]
M.E. Adelson, M. Feota, J. Trama, R.C. Milton, E. Mordechai.
Simultaneous detection ofherpes simplex virus types1 and 2 by real-time PCR and Pyrosequencing.
J Clin Virol, 33 (2005), pp. 25-34
[45.]
H. Mayta, R.H. Gilman, M.M. Calderon, A. Gottlieb, G. Soto, I. Tuero, et al.
18S Ribosomal DNA-Based PCR for Diagnosis of Trichomonas vaginalis.
J Clin Microbiol, 38 (2000), pp. 2683-2687
[46.]
D.E. Riley, M.C. Roberts, T. Takayama, J.N. Krieger.
Development of a Polymerasa Chain Reaction-Based Diagnosis of Trichomonas vaginalis.
J Clin Microbiol, 30 (1992), pp. 465-472
[47.]
P. Kengne, F. Veas, N. Vidal, J.P. Rey, G. Cuny.
Trichomonas vaginalis: Repetead DNA Target for Highly Sensitive and Specific Polymerase Chain Reaction Diagnosis.
Cell Mol Biol, 40 (1994), pp. 819-831
[48.]
G. Madico, T.C. Quinn, Rómpalo, J.R.K.T. Mckee, C.A. Gydos.
Diagnosis of Trichomonas vaginalis infection by PCR Using Vaginal Swab Samples.
J Clin Microbiol, 36 (1998), pp. 3205-3210
[49.]
M.F. Shaio, P.R. Lin, J.Y. Liu.
Colorimetric One-Tube Nested PCR for Detection of Trichomonas vaginalis in Vaginal Discharge.
J Clin Microbiol, 35 (1997), pp. 132-138
[50.]
J. Paces, V. Urbánková, P. Urbánek.
Cloning and characterization of a repetitive DNA sequence specific for Trichomonas vaginalis.
Mol Biol Parasitol, 54 (1992), pp. 247-256
[51.]
A.M. Caliendo, J.A. Jordan, A.M. Green, J. Ingersoll, R.J. Diclemente, G.M. Wingood.
Real-time PCR improves detection of Trichomonas vaginalis infection compared with culture using self-collected vaginal swabs.
Infect Dis Obstet Gynecol, 13 (2005), pp. 145-150
[52.]
P. Simpson, G. Higgins, M. Qiao, R. Waddell, T. Kok.
Real-time PCRs for detection of Trichomonas vaginalis beta-tubulin and 18S rRNA genes in female genital specimens.
J Med Microbiol, 56 (2007), pp. 772-777
[53.]
R. Maw, on behalf of the HPV Special Interest Group of BASHH.
Anogenital warts.
Sex Transm Infect, 82 (2006), pp. 40-41
[54.]
Guidelines for treatment of genital warts.
MMWR, 47 (1998), pp. 88-89
[55.]
D.R. Brown, J.M. Schroeder, J.T. Bryan, M.H. Stoler, K.H. Fife.
Detection of multiple human papillomavirus types in Condylomata acuminata lesions from otherwise healthy and immunosuppressed patients.
J Clin Microbiol, 37 (1999), pp. 3316-3322
[56.]
M. Frisch, C. Fenger, A.J. Van den Brule, P. Sørensen, C.J. Meijer, J.M. Walboomers, et al.
Varians of squamous cell carcinoma of the anal canal and perianal skin and their relation to human papyllomavirus.
Cancer Res, 59 (1999), pp. 753-757
[57.]
C.M. Nielson, R. Flores, R.B. Harris, M. Abrahamsen, M.R. Papenfuss, E.F. Dunne, et al.
Human papillomavirus prevalence and type distribution in male anogenital sites and semen.
Cancer Epidemiol Biomarkers Prev, 16 (2007), pp. 1107-1114
[58.]
S.B. Baldwin, D.R. Wallace, M.R. Papenfuss, M. Abrahamsen, L.C. Vaught, J.R. Kornegay, et al.
Human papillomavirus infection in men attending a sexually transmitted disease clinic.
J Infect Dis, 187 (2003), pp. 1064-1070
[59.]
G. Sanclemente, S. Herrera, S.K. Tyring, P.L. Rady, J.J. Zuleta, L.A. Correa, et al.
Human papillomavirus (HPV) viral load and HPV type in the clinical outcome of HIV-positive patients treated with imiquimod for anogenital warts and anal intraepithelial neoplasia.
J Eur Acad Dermatol Venereol, 21 (2007), pp. 1054-1060
[60.]
F. Roka, J. Roka, A. Trost, H. Schalk, C. Zagler, R. Kirnbauer, et al.
Anal human papillomavirus testing with Digene's hybrid capture 2 using two different sampling methods.
Dis Colon Rectum, 51 (2008), pp. 62-66
[61.]
A.A. Brink, P.J. Snijders, C.J. Meijer.
HPV detection methods.
Dis Markers, 23 (2007), pp. 273-281
[62.]
T.S. Wang, H.F. Chou, W.M. Liu, K.B. Choo.
Semiautomated typing of human papillomaviruses by restriction fragment length polymorphism analysis of fluorescence-labeled PCR fragments.
J Med Virol, 59 (1999), pp. 536-540
[63.]
O. Lungu, T.C. Wright Jr, S. Silverstein.
Typing of human papillomaviruses by polymerase chain reaction amplification with L1 consensus primers and RFLP analysis.
Mol Cell Probes, 6 (1992), pp. 145-152
[64.]
P.E. Castle, P.E. Gravitt, D. Solomon, C.M. Wheeler, M. Schiffman.
Comparison of linear array and line blot assay for detection of human papillomavirus and diagnosis of cervical precancer and cancer in the atypical squamous cell of undetermined significance and low-grade squamous intraepithelial lesion triage study.
J Clin Microbiol, 46 (2008), pp. 109-117
[65.]
H. Gazi, K. Degerli, O. Kurt, A. Teker, Y. Uyar, H. Caglar, et al.
Use of DNA hybridization test for diagnosing bacterial vaginosis in women with symptoms suggestive of infection.
[66.]
H.L. Brown, D.D. Fuller, L.T. Jasper, T.E. Davis, J.D. Wright.
Clinical evaluation of Affirm VPIII in the detection and identification of Trichomonas vaginalis, Gardnerella vaginalis and Candida species in vaginitis/vaginosis.
Infect Dis Obstet Gynecol, 12 (2004), pp. 17-21
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos