metricas
covid
Buscar en
Enfermedades Infecciosas y Microbiología Clínica
Toda la web
Inicio Enfermedades Infecciosas y Microbiología Clínica El diagnóstico molecular en las infecciones parasitarias y fúngicas
Información de la revista
Vol. 26. Núm. S9.
Utilidad de la biología molecular en el diagnóstico microbiológico
Páginas 50-57 (julio 2008)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 26. Núm. S9.
Utilidad de la biología molecular en el diagnóstico microbiológico
Páginas 50-57 (julio 2008)
Acceso a texto completo
El diagnóstico molecular en las infecciones parasitarias y fúngicas
Molecular diagnosis of parasitic and fungal infections
Visitas
5362
Rafael Borrás Salvadora, Manuel Cuenca-Estrellab, María Victoria Domínguez Márquezc, Ignacio Gadea Gironésd,
Autor para correspondencia
igadea@fjd.es

Correspondencia: Departamento de Microbiología. Fundación Jiménez Díaz-UTE. Avda. Reyes Católicos, 2. 28040 Madrid. España.
a Departamento de Microbiología. Facultad de Medicina. Hospital Clínico Universitario. Valencia. España
b Servicio de Micología. Centro Nacional de Microbiología. Instituto de Salud Carlos III. Majadahonda. Madrid. España
c Servicio de Microbiología. Hospital Universitario La Ribera. Alzira. Valencia. España
d Departamento de Microbiología. Fundación Jiménez Díaz-UTE. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

El diagnóstico microbiológico convencional de las infecciones fúngicas y parasitarias se ha caracterizado por su escasa sensibilidad diagnóstica, su laboriosidad y la necesidad de microscopistas experimentados. Frente a ellos, los métodos diagnósticos basados en la detección de ácidos nucleicos son una alternativa magnífica para superar estos problemas, aunque todavía no han dado respuesta satisfactoria a todas las situaciones. Los métodos moleculares utilizados son variados, la mayoría basados en técnicas de amplificación de ácidos nucleicos, y han demostrado ser útiles para los diagnósticos micológico y parasitológico, los estudios epidemiológicos y taxonómicos, y para el seguimiento de la respuesta a los diferentes tratamientos y la detección de resistencias. Es posible que su implantación presente dificultades en los países en vías de desarrollo, debido a su mayor coste; pero los métodos de diagnóstico molecular ya comienzan a extenderse en los laboratorios de microbiología clínica y rivalizan, con éxito, con los métodos clásicos. En este trabajo, nos proponemos revisar la situación actual de los métodos moleculares en el diagnóstico de las infecciones fúngicas y parasitarias.

Palabras clave:
Micosis
Parasitosis
Diagnóstico molecular
PCR

Conventional microbiological diagnosis of fungal infections and parasitic diseases has been characterized by low diagnostic sensitivity, laboriousness, and the need for expert microscopists. Consequently, diagnostic methods based on the detection of nucleic acids are a magnificent alternative to overcome these problems, but have not yet provided a satisfactory response in all situations. The molecular methods used are varied and most are based on techniques of nucleic acid amplification. These techniques have proved useful for mycological and parasitological diagnosis, for epidemiological and taxonomic studies, and for monitoring the response to different treatments and detection of resistance. The introduction of these techniques in developing countries may be hampered by their higher cost but molecular diagnostic methods are already beginning to spread in clinical microbiology laboratories and are competing successfully with traditional methods. The present article reviews the current status of molecular methods in the diagnosis of fungal and parasitic infections.

Key words:
Mycosis
Parasitic diseases
Molecular diagnosis
PCR
El Texto completo está disponible en PDF
Bibliografía
[1.]
Borras R. Parasitología clínica. En: Farmacéuticos CGdCOd, editor. Análisis Clínicos. Madrid: 2005. p. 259-86.
[2.]
B. Singh.
Molecular methods for diagnosis and epidemiological studies of parasitic infections.
Int J Parasitol, 27 (1997), pp. 1135-1145
[3.]
C. Navarro, M.V. Dominguez-Marquez, M.M. Garijo-Toledo, S. Vega-Garcia, S. Fernandez-Barredo, M.T. Perez-Gracia, et al.
High prevalence of Blastocystis sp. in pigs reared under intensive growing systems: Frequency of ribotypes and associated risk factors.
Vet Parasitol, 153 (2008), pp. 347-358
[4.]
R. Reithinger, J.C. Dujardin.
Molecular diagnosis of leishmaniasis: current status and future applications.
J Clin Microbiol, 45 (2007), pp. 21-25
[5.]
F. Perandin, N. Manca, A. Calderaro, G. Piccolo, L. Galati, L. Ricci, et al.
Development of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosis.
J Clin Microbiol, 42 (2004), pp. 1214-1219
[6.]
L.L. Poon, B.W. Wong, E.H. Ma, K.H. Chan, L.M. Chow, W. Abeyewickreme, et al.
Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification.
Clin Chem, 52 (2006), pp. 303-306
[7.]
J. Cox-Singh, T.M. Davis, K.S. Lee, S.S. Shamsul, A. Matusop, S. Ratnam, et al.
Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening.
Clin Infect Dis, 46 (2008), pp. 165-171
[8.]
G. Snounou, S. Viriyakosol, X.P. Zhu, W. Jarra, L. Pinheiro, V.E. Do Rosario, et al.
High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction.
Mol Biochem Parasitol, 61 (1993), pp. 315-320
[9.]
M.C. Suarez-Mutis, P. Cuervo, F.M. Leoratti, S.L. Moraes-Avila, A.W. Ferreira, O. Fernandes, et al.
Cross sectional study reveals a high percentage of asymptomatic Plasmodium vivax infection in the Amazon Rio Negro area, Brazil.
Rev Inst Med Trop Sao Paulo, 49 (2007), pp. 159-164
[10.]
E. Ayala, A.G. Lescano, R.H. Gilman, M. Calderon, V.V. Pinedo, H. Terry, et al.
Polymerase chain reaction and molecular genotyping to monitor parasitological response to anti-malarial chemotherapy in the Peruvian Amazon.
Am J Trop Med Hyg, 74 (2006), pp. 546-553
[11.]
R.K. Mehlotra, H. Fujioka, P.D. Roepe, O. Janneh, L.M. Ursos, V. Jacobs-Lorena, et al.
Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America.
Proc Natl Acad Sci USA, 98 (2001), pp. 12689-12694
[12.]
S. Mharakurwa, C. Simoloka, P.E. Thuma, C.J. Shiff, D.J. Sullivan.
PCR detection of Plasmodium falciparum in human urine and saliva samples.
[13.]
B.E. Gama, E. Silva-Pires Fdo, M.N. Lopes, M.A. Cardoso, C. Britto, K.L. Torres, et al.
Real-time PCR versus conventional PCR for malaria parasite detection in low-grade parasitemia.
Exp Parasitol, 116 (2007), pp. 427-432
[14.]
C. Riera, R. Fisa, P. Lopez, E. Ribera, J. Carrio, V. Falco, et al.
Evaluation of a latex agglutination test (KAtex) for detection of Leishmania antigen in urine of patients with HIV-Leishmania coinfection: value in diagnosis and posttreatment follow-up.
Eur J Clin Microbiol Infect Dis, 23 (2004), pp. 899-904
[15.]
E. Bensoussan, A. Nasereddin, F. Jonas, L.F. Schnur, C.L. Jaffe.
Comparison of PCR assays for diagnosis of cutaneous leishmaniasis.
J Clin Microbiol, 44 (2006), pp. 1435-1439
[16.]
Y.M. Brustoloni, R.B. Lima, R.V. Da Cunha, M.E. Dorval, E.T. Oshiro, A.L. De Oliveira, et al.
Sensitivity and specificity of polymerase chain reaction in Giemsa-stained slides for diagnosis of visceral leishmaniasis in children.
Mem Inst Oswaldo Cruz, 102 (2007), pp. 497-500
[17.]
J.A. Garcia-Garcia, J. Martin-Sanchez, M. Gallego, A. Rivero-Roman, A. Camacho, C. Riera, et al.
Use of noninvasive markers to detect Leishmania infection in asymptomatic human immunodeficiency virus-infected patients.
J Clin Microbiol, 44 (2006), pp. 4455-4458
[18.]
M. Motazedian, M. Fakhar, M.H. Motazedian, G. Hatam, F. Mikaeili.
A urinebased polymerase chain reaction method for the diagnosis of visceral leishmaniasis in immunocompetent patients.
Diagn Microbiol Infect Dis, 60 (2008), pp. 151-154
[19.]
C. Riera, R. Fisa, E. Ribera, J. Carrio, V. Falco, M. Gallego, et al.
Value of culture and nested polymerase chain reaction of blood in the prediction of relapses in patients co-infected with Leishmania and human immunodeficiency virus.
Am J Trop Med Hyg, 73 (2005), pp. 1012-1015
[20.]
E. Prina, E. Roux, D. Mattei, G. Milon.
Leishmania DNA is rapidly degraded following parasite death: an analysis by microscopy and real-time PCR.
Microbes Infect, 9 (2007), pp. 1307-1315
[21.]
M.P. Barrett, R.J. Burchmore, A. Stich, J.O. Lazzari, A.C. Frasch, J.J. Cazzulo, et al.
The trypanosomiases.
Lancet, 362 (2003), pp. 1469-1480
[22.]
V. Amonneau, P. Solano, M. Koffi, M. Denizot, G. Cuny.
Contributions and limits of the diagnosis of human African trypanosomiasis.
Med Sci (Paris), 20 (2004), pp. 871-875
[23.]
M. Radwanska, F. Claes, S. Magez, E. Magnus, D. Perez-Morga, E. Pays, et al.
Novel primer sequences for polymerase chain reaction-based detection of Trypanosoma brucei gambiense.
Am J Trop Med Hyg, 67 (2002), pp. 289-295
[24.]
K. Picozzi, E.M. Fevre, M. Odiit, M. Carrington, M.C. Eisler, I. Maudlin, et al.
Sleeping sickness in Uganda: a thin line between two fatal diseases.
BMJ, 331 (2005), pp. 1238-1241
[25.]
S. Becker, J.R. Franco, P.P. Simarro, A. Stich, P.M. Abel, D. Steverding.
Realtime PCR for detection of Trypanosoma brucei in human blood samples.
Diagn Microbiol Infect Dis, 50 (2004), pp. 193-199
[26.]
N. Kuboki, N. Inoue, T. Sakurai, F. Di Cello, D.J. Grab, H. Suzuki, et al.
Loopmediated isothermal amplification for detection of African trypanosomes.
J Clin Microbiol, 41 (2003), pp. 5517-5524
[27.]
V. Jamonneau, P. Solano, A. Garcia, V. Lejon, N. Dje, T.W. Miezan, et al.
Stage determination and therapeutic decision in human African trypanosomiasis: value of polymerase chain reaction and immunoglobulin M quantification on the cerebrospinal fluid of sleeping sickness patients in Cote d’Ivoire.
Trop Med Int Health, 8 (2003), pp. 589-594
[28.]
H.A. Avila, J.B. Pereira, O. Thiemann, E. De Paiva, W. DeGrave, C.M. Morel, et al.
Detection of Trypanosoma cruzi in blood specimens of chronic chagasic patients by polymerase chain reaction amplification of kinetoplast minicircle DNA: comparison with serology and xenodiagnosis.
J Clin Microbiol, 31 (1993), pp. 2421-2426
[29.]
G. Russomando, A. Figueredo, M. Almiron, M. Sakamoto, K. Morita.
Polymerase chain reaction-based detection of Trypanosoma cruzi DNA in serum.
J Clin Microbiol, 30 (1992), pp. 2864-2868
[30.]
C.T. Miyamoto, M.L. Gomes, A.V. Marangon, S.M. Araujo, M.T. Bahia, M. Lana, et al.
Trypanosoma cruzi: sensitivity of the polymerase chain reaction for detecting the parasite in the blood of mice infected with different clonal genotypes.
Exp Parasitol, 112 (2006), pp. 198-201
[31.]
J.M. Burgos, S.B. Begher, J.M. Freitas, M. Bisio, T. Duffy, J. Altcheh, et al.
Molecular diagnosis and typing of Trypanosoma cruzi populations and lineages in cerebral Chagas disease in a patient with AIDS.
Am J Trop Med Hyg, 73 (2005), pp. 1016-1018
[32.]
M. Flores-Chavez, M.F. Bosseno, B. Bastrenta, J.L. Dalenz, M. Hontebeyrie, S. Revollo, et al.
Polymerase chain reaction detection and serologic follow-up after treatment with benznidazole in Bolivian children infected with a natural mixture of Trypanosoma cruzi I and II.
Am J Trop Med Hyg, 75 (2006), pp. 497-501
[33.]
A. Saldana, F. Samudio, A. Miranda, L.M. Herrera, S.P. Saavedra, L. Caceres, et al.
Predominance of Trypanosoma rangeli infection in children from a Chagas disease endemic area in the west-shore of the Panama canal.
Mem Inst Oswaldo Cruz, 100 (2005), pp. 729-731
[34.]
M. Piron, R. Fisa, N. Casamitjana, P. Lopez-Chejade, L. Puig, M. Verges, et al.
Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples.
[35.]
B. Leiva, M. Lebbad, J. Winiecka-Krusnell, I. Altamirano, A. Tellez, E. Linder.
Overdiagnosis of Entamoeba histolytica and Entamoeba dispar in Nicaragua: a microscopic, triage parasite panel and PCR study.
Arch Med Res, 37 (2006), pp. 529-534
[36.]
K. Khairnar, S.C. Parija.
A novel nested multiplex polymerase chain reaction (PCR) assay for differential detection of Entamoeba histolytica, E. moshkovskii and E. dispar DNA in stool samples.
BMC Microbiol, 7 (2007), pp. 47
[37.]
R. Haque, I.K. Ali, S. Akther, W.A. Petri Jr.
Comparison of PCR, isoenzyme analysis, and antigen detection for diagnosis of Entamoeba histolytica infection.
J Clin Microbiol, 36 (1998), pp. 449-452
[38.]
A. Calderaro, C. Gorrini, S. Bommezzadri, G. Piccolo, G. Dettori, C. Chezzi.
Entamoeba histolytica and Entamoeba dispar: comparison of two PCR assays for diagnosis in a non-endemic setting.
Trans R Soc Trop Med Hyg, 100 (2006), pp. 450-457
[39.]
S.C. Parija, K. Khairnar.
Detection of excretory Entamoeba histolytica DNA in the urine, and detection of E. histolytica DNA and lectin antigen in the liver abscess pus for the diagnosis of amoebic liver abscess.
BMC Microbiol, 7 (2007), pp. 41
[40.]
B. Almirante, D. Rodriguez, B.J. Park, M. Cuenca-Estrella, A.M. Planes, M. Almela, et al.
Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, Barcelona, Spain, from 2002 to 2003.
J Clin Microbiol, 43 (2005), pp. 1829-1835
[41.]
S. Ascioglu, J.H. Rex, B. De Pauw, J.E. Bennett, J. Bille, F. Crokaert, et al.
Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus.
Clin Infect Dis, 34 (2002), pp. 7-14
[42.]
J. Gavalda, O. Len, R. San Juan, J.M. Aguado, J. Fortun, C. Lumbreras, et al.
Risk factors for invasive aspergillosis in solid-organ transplant recipients: a case-control study.
Clin Infect Dis, 41 (2005), pp. 52-59
[43.]
I. Gadea, M. Cuenca-Estrella.
Guidelines for fungal diagnoses and antifungal sensitivity studies.
Enferm Infecc Microbiol Clin, 22 (2004), pp. 32-39
[44.]
M. Cuenca-Estrella, A. Gomez-Lopez, E. Mellado, M.J. Buitrago, A. Monzon, J.L. Rodriguez-Tudela.
Head-to-head comparison of the activities of currently available antifungal agents against 3,378 Spanish clinical isolates of yeasts and filamentous fungi.
Antimicrob Agents Chemother, 50 (2006), pp. 917-921
[45.]
A. Alastruey-Izquierdo, M. Cuenca-Estrella, A. Monzon, J.L. Rodriguez-Tudela.
Prevalence and susceptibility testing of new species of Pseudallescheria and Scedosporium in a collection of clinical mold isolates.
Antimicrob Agents Chemother, 51 (2007), pp. 748-751
[46.]
A. Alastruey-Izquierdo, M. Cuenca-Estrella, A. Monzon, E. Mellado, J.L. Rodriguez-Tudela.
Antifungal susceptibility profile of clinical Fusarium spp. isolates identified by molecular methods.
J Antimicrob Chemother, 61 (2008), pp. 805-809
[47.]
A. Gomez-Lopez, A. Alastruey-Izquierdo, D. Rodriguez, B. Almirante, A. Pahissa, J.L. Rodriguez-Tudela, et al.
Prevalence and Susceptibility Profile of Candida metapsilosis and Candida orthopsilosis: Results from Population-Based Surveillance of Candidemia in Spain.
Antimicrob Agents Chemother, 52 (2008), pp. 1506-1509
[48.]
K. Nagao, T. Ota, A. Tanikawa, Y. Takae, T. Mori, S. Udagawa, et al.
Genetic identification and detection of human pathogenic Rhizopus species, a major mucormycosis agent, by multiplex PCR based on internal transcribed spacer region of rRNA gene.
J Dermatol Sci, 39 (2005), pp. 23-31
[49.]
J.L. Rodriguez-Tudela, T.M. Diaz-Guerra, E. Mellado, V. Cano, C. Tapia, A. Perkins, et al.
Susceptibility patterns and molecular identification of Trichosporon species.
Antimicrob Agents Chemother, 49 (2005), pp. 4026-4034
[50.]
F.C. Odds, M.E. Bougnoux, D.J. Shaw, J.M. Bain, A.D. Davidson, D. Diogo, et al.
Molecular phylogenetics of Candida albicans.
Eukaryot Cell, 6 (2007), pp. 1041-1052
[51.]
L. Alcazar-Fuoli, E. Mellado, A. Alastruey-Izquierdo, M. Cuenca-Estrella, J.L. Rodriguez-Tudela.
Aspergillus section fumigati: antifungal susceptibility patterns and sequence-based identification.
Antimicrob Agents Chemother, 52 (2008), pp. 1244-1251
[52.]
A. Loy, L. Bodrossy.
Highly parallel microbial diagnostics using oligonucleotide microarrays.
Clin Chim Acta, 363 (2006), pp. 106-119
[53.]
M.J. Buitrago, A. Gomez-Lopez, E. Mellado, J.L. Rodriguez-Tudela, M. Cuenca-Estrella.
Detection of Aspergillus spp. by real-time PCR in a murine model of pulmonary infection.
Enferm Infecc Microbiol Clin, 23 (2005), pp. 464-468
[54.]
J.P. Donnelly.
Polymerase chain reaction for diagnosing invasive aspergillosis: getting closer but still a ways to go.
Clin Infect Dis, 42 (2006), pp. 487-489
[55.]
A. Gomez-Lopez, M.T. Martin-Gomez, P. Martin-Davila, P. Lopez-Onrubia, J. Gavalda, J. Fortun, et al.
Detection of fungal DNA by real-time polymerase chain reaction: evaluation of 2 methodologies in experimental pulmonary aspergillosis.
Diagn Microbiol Infect Dis, 56 (2006), pp. 387-393
[56.]
R. McMullan, L. Metwally, P.V. Coyle, S. Hedderwick, B. McCloskey, H.J. O’Neill, et al.
A prospective clinical trial of a real-time polymerase chain reaction assay for the diagnosis of candidemia in nonneutropenic, critically ill adults.
Clin Infect Dis, 46 (2008), pp. 890-896
[57.]
S. Osorio, R. De la Camara, M.C. Monteserin, R. Granados, F. Ona, J.L. Rodriguez-Tudela, et al.
Recurrent disseminated skin lesions due to Metarrhizium anisopliae in an adult patient with acute myelogenous leukemia.
J Clin Microbiol, 45 (2007), pp. 651-655
[58.]
H.H. Larsen, J.A. Kovacs, F. Stock, V.H. Vestereng, B. Lundgren, S.H. Fischer, et al.
Development of a rapid real-time PCR assay for quantitation of Pneumocystis carinii f. sp. carinii.
J Clin Microbiol, 40 (2002), pp. 2989-2993
[59.]
H.H. Larsen, M.L. Von Linstow, B. Lundgren, B. Hogh, H. Westh, J.D. Lundgren.
Primary Pneumocystis infection in infants hospitalized with acute respiratory tract infection.
Emerg Infect Dis, 13 (2007), pp. 66-72
[60.]
M.J. Buitrago, J. Berenguer, E. Mellado, J.L. Rodriguez-Tudela, M. Cuenca-Estrella.
Detection of imported histoplasmosis in serum of HIV-infected patients using a real-time PCR-based assay.
Eur J Clin Microbiol Infect Dis, 25 (2006), pp. 665-668
[61.]
M.J. Buitrago, A. Gomez-Lopez, A. Monzon, J.L. Rodriguez-Tudela, M. Cuenca-Estrella.
Assessment of a quantitative PCR method for clinical diagnosis of imported histoplasmosis.
Enferm Infecc Microbiol Clin, 25 (2007), pp. 16-22
[62.]
S.H. Marques da Silva, F. Queiroz-Telles, A.L. Colombo, M.H. Blotta, J.D. Lopes, Z. Pires De Camargo.
Monitoring gp43 antigenemia in Paracoccidioidomycosis patients during therapy.
J Clin Microbiol, 42 (2004), pp. 2419-2424
[63.]
G. Ricci, I.D. Da Silva, A. Sano, R.C. Borra, M. Franco.
Detection of Paracoccidioides brasiliensis by PCR in biopsies from patients with paracoccidioidomycosis: correlation with the histopathological pattern.
Pathologica, 99 (2007), pp. 41-45
[64.]
S.V. Balashov, R. Gardiner, S. Park, D.S. Perlin.
Rapid, high-throughput, multiplex, real-time PCR for identification of mutations in the cyp51A gene of Aspergillus fumigatus that confer resistance to itraconazole.
J Clin Microbiol, 43 (2005), pp. 214-222
[65.]
G. Garcia-Effron, A. Dilger, L. Alcazar-Fuoli, S. Park, E. Mellado, D.S. Perlin.
Rapid detection of triazole antifungal resistance in Aspergillus fumigatus.
J Clin Microbiol, 46 (2008), pp. 1200-1206
[66.]
E. Mellado, G. Garcia-Effron, L. Alcazar-Fuoli, W.J. Melchers, P.E. Verweij, M. Cuenca-Estrella, et al.
A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations.
Antimicrob Agents Chemother, 51 (2007), pp. 1897-1904
[67.]
D. Sanglard, F. Ischer, D. Calabrese, M. Micheli, J. Bille.
Multiple resistance mechanisms to azole antifungals in yeast clinical isolates.
Drug Resist Updat, 1 (1998), pp. 255-265
[68.]
S.V. Balashov, S. Park, D.S. Perlin.
Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1.
Antimicrob Agents Chemother, 50 (2006), pp. 2058-2063
[69.]
M. Cuenca-Estrella, E. Mellado.
Are molecular techniques useful in aspergillosis surveillance and control?.
Enferm Infecc Microbiol Clin, 21 (2003), pp. 469-471
[70.]
M.C. Galhardo, R.M. De Oliveira, A.C. Valle, A. Paes Rde, P.M. Silvatavares, A. Monzon, et al.
Molecular epidemiology and antifungal susceptibility patterns of Sporothrix schenckii isolates from a cat-transmitted epidemic of sporotrichosis in Rio de Janeiro, Brazil.
Med Mycol, 46 (2008), pp. 141-151
[71.]
T.M. Diaz-Guerra, E. Mellado, M. Cuenca-Estrella, L. Gaztelurrutia, J.I. Navarro, J.L. Tudela.
Genetic similarity among one Aspergillus flavus strain isolated from a patient who underwent heart surgery and two environmental strains obtained from the operating room.
J Clin Microbiol, 38 (2000), pp. 2419-2422
[72.]
I. Gadea, M. Cuenca-Estrella, E. Prieto, T.M. Diaz-Guerra, J.I. Garcia-Cia, E. Mellado, et al.
Genotyping and antifungal susceptibility profile of Dipodascus capitatus isolates causing disseminated infection in seven hematological patients of a tertiary hospital.
J Clin Microbiol, 42 (2004), pp. 1832-1836
[73.]
E. Mellado, T.M. Diaz-Guerra, M. Cuenca-Estrella, V. Buendia, J. Aspa, E. Prieto, et al.
Characterization of a possible nosocomial aspergillosis outbreak.
Clin Microbiol Infect, 6 (2000), pp. 543-548
Copyright © 2008. Elsevier España S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.eimc.2020.02.005
No mostrar más