metricas
covid
Buscar en
Revista Argentina de Microbiología
Toda la web
Inicio Revista Argentina de Microbiología Similarities of Geobacillus bacteria based on their profiles of antimicrobial su...
Información de la revista
Vol. 56. Núm. 1.
Páginas 102-111 (enero - marzo 2024)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
630
Vol. 56. Núm. 1.
Páginas 102-111 (enero - marzo 2024)
Original article
Acceso a texto completo
Similarities of Geobacillus bacteria based on their profiles of antimicrobial susceptibility in milk samples
Similitudes de las bacterias de Geobacillus según sus perfiles de susceptibilidad antimicrobiana en muestras de leche
Visitas
630
Orlando G. Nagel, Maria L. Gasparotti, Selva I. Machado, Rafael L. Althaus
Autor para correspondencia
ralthaus@fcv.unl.edu.ar

Corresponding author.
Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, R.P.L. Kreder 2805, 3080 Esperanza, Argentina
Highlights

  • Bacteria of the genus Geobacillus have different antimicrobial susceptibilities.

  • The bacterial susceptibilities cluster is similar to the bacterial DNA cluster.

  • Bioassays with different Geobacillus could be designed to improve commercial test.

Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (3)
Mostrar másMostrar menos
Tablas (3)
Table 1. Antibiotic concentrations (μg/l) used for each test bacterium in the microbiological inhibition method.
Table 2. Parameters estimated by the model for different bacteria of the genus Geobacillus.
Table 3. Minimum inhibitory concentrations (μg/l) for test bacteria of the genus Geobacillus and maximum residue limits (μg/l) in milk.
Mostrar másMostrar menos
Abstract

The genus Geobacillus is composed of thermophilic bacteria that exhibit diverse biotechnological potentialities. Specifically, Geobacillus stearothermophilus is included as a test bacterium in commercial microbiological inhibition methods, although it exhibits limited sensitivity to aminoglycosides, macrolides, and quinolones. Therefore, this article evaluates the antibiotic susceptibility profiles of five test bacteria (G. stearothermophilus subsp. calidolactis C953, Geobacillus thermocatenulatus LMG 19007, Geobacillus thermoleovorans LMG 9823, Geobacillus kaustophilus DSM 7263 and Geobacillus vulcani 13174). For that purpose, the minimum inhibitory concentrations (MICs) of 21 antibiotics were determined in milk samples for five test bacteria using the radial diffusion microbiological inhibition method. Subsequently, the similarities between bacteria and antibiotics were analyzed using cluster analysis. The dendrogram of this multivariate analysis shows an association between a group formed by G. thermocatenulatus and G. stearothermophilus and another by G. thermoleovorans, G. kaustophilus and G. vulcani. Finally, future microbiological methods could be developed in microtiter plates using G. thermocatenulatus as test bacterium, as it exhibits similar sensitivities to G. stearothermophilus. Conversely, G. vulcani, G. thermoleovorans and G. kaustophilus show higher MICs than G. thermocatenulatus.

Keywords:
Geobacillus
Antimicrobial susceptibility
Antibiotic residues
Minimum inhibitory concentration
Cluster analysis
Resumen

El género Geobacillus está compuesto por bacterias termófilas que poseen diversas potencialidades biotecnológicas. Puntualmente, G. stearothermophilus se incluye como bacteria utilizadas para testeo en pruebas comerciales de inhibición microbiana para detectar residuos de antibióticos en alimentos, aunque presenta una limitada sensibilidad frente a aminoglucósidos, macrólidos y quinolonas. En este trabajo se evaluaron los perfiles de sensibilidad antibiótica de cinco bacterias utilizadas para testeo: G. stearothermophilus subsp. calidolactis C953, G. thermocatenulatus LMG 19007, G. thermoleovorans LMG 9823, G. kaustophilus DSM 7263 y G. vulcani 13174. Para ello, se determinaron las concentraciones inhibitorias mínimas (CIM) de 21 antibióticos en muestras de leche frente a las bacterias mencionadas mediante el método de inhibición microbiológica de difusión radial. Posteriormente, se analizaron las similitudes entre estas bacterias y entre los diferentes antibióticos evaluados mediante el análisis de clusters. El dendrograma de este análisis multivariante detectó un grupo formado por G. thermocatenulatus y G. stearothermophilus y otro constituido por G. thermoleovorans, G. kaustophilus y G. vulcani. En el futuro se podrían desarrollar métodos microbiológicos en placas de microtitulación utilizando G. thermocatenulatus como bacteria-test, puesto que este microorganismo posee sensibilidades similares a G. stearothermophilus. Por el contrario, G. vulcani, G. thermoleovorans y G. kaustophilus presentan CIM superiores a G. thermocatenulatus.

Palabras clave:
Geobacillus
Susceptibilidad antimicrobiana
Residuos de antibióticos
Concentraciones mínimas inhibitorias
Análisis conglomerados
Texto completo
Introduction

The genus Geobacillus is characterized by including Gram positive, aerobic or facultative anaerobic rod-shaped bacteria, with the ability to form endospores32 and grow at a wide range of temperatures (35–80°C). This group includes Geobacillus stearothermophilus, Geobacillus thermocatenulatus, Geobacillus thermoleovorans, Geobacillus kaustophilus, and Geobacillus vulcani, among others.

Thermophilic bacteria of this genus are found in a variety of harsh environments such as high-temperature oil fields, marine vents, corroded pipes in extremely deep wells, African and Russian hot springs and the Marianas Trench, but can also be found in manure hay, garden soils, and the Sahara Desert4,31. This unexpected or inconsistent distribution of Geobacillus spp. has been discussed by Zeigler32, who correlated this inconsistency with its worldwide spread.

These bacteria are used in various industrial applications19, such as enzyme production3,7,10,11,16,25, bioethanoll6,17, papermaking27,28, bioremediation15,18,23,30, and animal feed production9.

In addition, G. stearothermophilus is specifically used as a test bacterium in commercial microbiological methods, such as Delvotest®, Eclipse® and Charm BY®, for the detection of antibiotic residues in food14. The advantages of G. stearothermophilus over other test bacteria include its low response times (2.5h), high incubation temperature (selective growth of this test bacterium), low cost and easiness to use in laboratories, high sensitivity to a wide group of antibiotics (beta-lactams, tetracyclines and sulfonamides), dichotomous responses (positive vs. negative) and possibility to be stored at 4°C for long periods of time14. However, the use of other strains of the genus Geobacillus (G. vulcani, G. thermocatenulatus, G. thermoleovorans and G. kaustophilus) for the development of methods to detect antibiotic residues in fluid matrices such as milk and meat extract has not yet been reported.

Before developing new bioassays, the susceptibility profiles of thermophilic bacteria to different antibiotics should be investigated. This can be achieved by using different antimicrobial susceptibility testing methods such as the agar dilution method, the broth macrodilution method, the disc diffusion/Kirby–Bauer method, Etest, the agar diffusion method in Petri dishes, and the microdilution method, which allow to estimate the minimum inhibitory concentration (MIC) of each antibiotic2,24.

Based on the above, the aim of this study was to analyze the antibiotic susceptibility profiles of thermophilic bacteria of the genus Geobacillus and identify similarities among the different test bacteria, with the purpose of recommending strains that can be used in future microbiological techniques for the detection of antibiotic residues in fluid matrices.

Materials and methodsMicroorganisms

The following commercially acquired strains were used for this study: G. stearothermophilus subsp. calidolactis C953 (Merck®, Ref. 1.11499, KGAA, Darmstadt, Germany), G. thermocatenulatus LMG 19007 (Leibniz Institute DSMZ, Braunschweig, Germany), G. thermoleovorans LMG 9823 (Leibniz Institute DSMZ, Braunschweig, Germany), G. kaustophilus DSM 7263 (Leibniz Institute DSMZ, Braunschweig, Germany) and G. vulcani 13174 (Leibniz Institute DSMZ, Braunschweig, Germany).

Milk samples

For the preparation of antibiotic solutions, milk samples were used from individual cows (Las Colonias, Santa Fe, Argentina) that were in the middle of the lactation period, untreated and not medicated before or during sampling. In addition, milk samples with low somatic cell count (SCC<300,000cells/ml) and low total bacterial count (TBC<400,000cells/ml) were selected to avoid potential interference in the inhibition of microbiological methods.

Antibiotic-fortified milk solutions

Twenty-one antibiotics (10 beta-lactams, 4 macrolides, 3 quinolones, 3 tetracyclines, and neomycin) were used. The solutions of each antibiotic were prepared by successive dilutions of a stock solution (1000mg/l) using antibiotic-free milk samples that tested negative to the Delvotest® “SP” method, which is considered the reference method2,8. For the preparation of the successive dilutions, volumes of stock solutions of each antibiotic containing less than 1% of the solution in milk were used13 in order not to alter the composition of the milk samples. In the study of antibiotic susceptibility for each test bacterium, five concentrations were prepared in ascending order of concentration (C1, C2, C3, C4 and C5), with each concentration being two-fold higher than the previous one (Table 1), using negative control milk samples.

Table 1.

Antibiotic concentrations (μg/l) used for each test bacterium in the microbiological inhibition method.

Antibiotics  G. stearothermophilus  G. thermoleovorans  G. vulcani  G. kaustophilus  G. thermocatenulatus 
Beta-lactams
Amoxycillin  4, 8, 16, 32, 64  8, 16, 32, 64, 128  12, 24, 48, 96, 192  8, 16, 32, 64, 128  4, 8, 16, 32, 64 
Ampicillin  4, 8, 16, 32, 64  16, 32, 64, 128, 256  8, 16, 32, 64, 128  8, 16, 32, 64, 128  4, 8, 16, 32, 64 
Cloxacillin  100, 200, 400, 800, 1600  200, 400, 800, 1600, 3200  100, 200, 400, 800, 1600  400, 800, 1600, 3200, 6400  15, 30, 60, 120, 240 
Oxacillin  15, 30, 60, 120, 240  100, 200, 400, 800, 1600  50, 100, 200, 400, 800  100, 200, 400, 800, 1600  15, 30, 60, 120, 240 
Penicillin “G”  2, 4, 8, 16, 32  8, 16, 32, 64, 128  12, 24, 48, 96, 192  8, 16, 32, 64, 128  4, 8, 16, 32, 64 
Cephalexin  100, 200, 400, 800, 1600  200, 400, 800, 1600, 3200  200, 400, 800, 1600, 3200  200, 400, 800, 1600, 3200  100, 200, 400, 800, 1600 
Cefadroxil  100, 200, 400, 800, 1600  100, 200, 400, 800, 1600  100, 200, 400, 800, 1600  1000, 2000, 400, 800, 16000  100, 200, 400, 800, 1600 
Cefoperazone  100, 200, 400, 800, 1600  100, 200, 400, 800, 1600  100, 200, 400, 800, 1600  100, 200, 400, 800, 1600  100, 200, 400, 800, 1600 
Ceftiofur  200, 400, 800, 1600, 3200  100, 200, 400, 800, 1600  100, 200, 400, 800, 1600  200, 400, 800, 1600, 3200  100, 200, 400, 800, 1600 
Cefuroxime  100, 200, 400, 800, 1600  100, 200, 400, 800, 1600  100, 200, 400, 800, 1600  200, 400, 800, 1600, 3200  100, 200, 400, 800, 1600 
Tetracyclines
Chlortetracycline  300, 600, 1200, 2400, 4800  800, 1600, 3200, 6400, 12800  400, 800, 1600, 3200, 6400  1000, 2000, 400, 800, 16000  400, 800, 1600, 3200, 6400 
Oxytetracycline  200, 400, 800, 1600, 3200  100, 200, 400, 800, 1600  200, 400, 800, 1600, 3200  1000, 2000, 400, 800, 16000  200, 400, 800, 1600, 3200 
Tetracycline  200, 400, 800, 1600, 3200  400, 800, 1600, 3200, 6400  200, 400, 800, 1600, 3200  1000, 2000, 400, 800, 16000  200, 400, 800, 1600, 3200 
Quinolones
Ciprofloxacin  5000, 10000, 20000, 40000, 80000  2000, 400, 800, 16000, 32000  3000, 6000, 12000, 24000, 48000  5000, 10000, 20000, 40000, 80000  2000, 400, 800, 16000, 32000 
Enrofloxacin  5000, 10000, 20000, 40000, 80000  2000, 400, 800, 16000, 32000  3000, 6000, 12000, 24000, 48000  5000, 10000, 20000, 40000, 80000  2000, 400, 800, 16000, 32000 
Marbofloxacin  5000, 10000, 20000, 40000, 80000  2000, 400, 800, 16000, 32000  3000, 6000, 12000, 24000, 48000  5000, 10000, 20000, 40000, 80000  2000, 400, 800, 16000, 32000 
Macrolides and neomycin
Erythromycin  300, 600, 1200, 2400, 4800  100, 200, 400, 800, 1600  1000, 2000, 400, 800, 16000  300, 600, 1200, 2400, 4800  800, 1600, 3200, 6400, 12800 
Lincomycin  200, 400, 800, 1600, 3200  150, 300, 600, 1200, 2400  1000, 2000, 400, 800, 16000  1000, 2000, 400, 800, 16000  600, 1200, 2400, 4800, 9600 
Neomycin  1500, 3000, 6000, 9000, 18000  750, 1500, 3000, 6000, 12000  1500, 3000, 6000, 9000, 18000  250, 500, 1000, 2000, 4000  8000, 16000, 32000, 64000, 128000 
Tilmicosin  800, 1600, 3200, 6400, 12800  50, 100, 200, 400, 800  400, 800, 1600, 3200, 6400  20, 40, 80, 160, 320  400, 800, 1600, 3200, 6400 
Tylosin  100, 200, 400, 800, 1600  50, 100, 200, 400, 800  100, 200, 400, 800, 1600  20, 40, 80, 160, 320  100, 200, 400, 800, 1600 
Preparation of the agar diffusion method

Mueller Hinton agar (38g/l, Biokar®, Ref. 10272, France) fortified with glucose (10g/l, Sigma Aldrich®, Ref. G8270, USA) at pH 7±0.1 was used. After sterilizing the culture medium in an autoclave (121°C – 15min), the agar was inoculated with a spore suspension of each test bacterium evaluated to achieve a concentration of 1×105spores/ml in the culture medium. Then, a volume of 14ml of culture medium was added to each Petri dish (90mm in diameter) to obtain a thickness of 2.2mm. For each test bacteria (5) and antibiotic (21), 12 microbiological bioassays were prepared in Petri dishes (5×21×12=1260 bioassays in total). Subsequently, the plates were cooled on a flat level surface to obtain a layer of uniform thickness2.

Next, once the culture medium solidified, seven cylindrical perforations (8mm in diameter) were made in each plate. Six of the perforations were distributed at a 60° angle, while the remaining perforation was made in the center of the plate where the antibiotic-free sample (AFS) was dispensed2.

For each test bacterium, 12 bioassays were prepared using milk samples fortified with the five concentrations (C1, C2, C3, C4 and C5) of the antibiotics detailed in Table 1. As shown in Figure 1, the intermediate concentration (C3) was considered a control sample and was analyzed alternately in triplicate in each of the 12 plates (36 replicates in total). This concentration (C3) was used for the correction of the inhibitory halos due to possible variations in the preparation of the bioassays2. Each of the four remaining concentrations (C1, C2, C4 and C5) was plated in triplicate on three plates (9 replicates). In each well of the Petri dishes, a volume of 70μl of antimicrobial-fortified milk sample (Table 1) was dispensed.

Figure 1.

Distribution of the different concentrations of antibiotics in milk samples used in the microbiological inhibition method in Petri dishes. C1: concentration 1; C2: concentration 2; C3: concentration 3 (control sample); C4: concentration 4; C5: concentration 5; AFS: antibiotic-free sample.

(0.56MB).

Subsequently, the plates were incubated at 64°C for 6h until the formation of clear, different and measurable inhibitory halos at the five concentrations of the antibiotics tested. Lastly, the diameters of the inhibitory halos (including the 8-mm well) were measured in duplicate, using a Vernier caliper with a sensitivity of ±0.1mm. Minimal increases of 2mm in the diameter of the inhibition halos (8mm+2mm=10mm) were recorded as significant inhibitions.

Statistical analysisCalculation of the minimum inhibitory concentration (MIC)

The relationship between the inhibition halos and the concentrations of each antibiotic and test bacterium was established by using the regression model proposed by Bonev et al.5:

where Y represents the diameter of the inhibition zone; D is the diffusion coefficient of the antibiotic; t is the incubation time (constant=6h); Ln C is the logarithmic transformation of the antibiotic concentration; and Ln MIC is the logarithmic transformation of the MIC at the end of the halo. This Eq. (1) can be solved using the following linear regression model26:
where Y2 represents the response variable and Ln C is the predictor variable. The MIC of each antibiotic and test bacterium was calculated using Eq. (3) and the coefficients β0 and β1 estimated by the linear regression model, as described below:

Determination of similarities by using cluster analysis

To visualize associations between test bacteria and antibiotics, we used cluster analysis. Initially, the association of antibiotics was studied by using the hierarchical cluster analysis26 with the Ward algorithm and the Euclidean distance of the MICs. Then, the similarities between the different strains of Geobacillus were analyzed by the hierarchical cluster analysis using the Ward algorithm and the Euclidean distance of the MIC values.

Results and discussionMinimum inhibitory concentrations

Table 2 shows the parameters β0 and β1 and the regression coefficient (R) calculated by means of the linear regression model for the 21 antibiotics and five test bacteria of the genus Geobacillus here evaluated. Regression coefficients were high, with values between 0.906 (chlortetracycline, G. thermocatenulatus) and 0.998 (cloxacillin, G. stearothermophilus), evidencing the linear proportionality between the squares of the inhibitory halos (Y2) and the logarithmic transformations of the antibiotic concentrations (Ln C), according to Bonev et al.5 Next, the MICs were calculated using Eq. (3) for each antibiotic and test bacterium (Table 3).

Table 2.

Parameters estimated by the model for different bacteria of the genus Geobacillus.

Antibiotics  G. stearothermophilusG. thermoleovoransG. vulcaniG. kaustophilusG. thermocatenulatus
  β0  β1  R  β0  β1  R  β0  β1  R  β0  β1  R  β0  β1  R 
Beta-lactams
Amoxycillin  −42.2  199.3  0.968  −223.6  294.8  0.931  −337.7  427.8  0.996  −201.9  276.9  0.945  −146.1  322.1  0.935 
Ampicillin  −32  189.9  0.971  −247.7  285.4  0.933  −228.8  343.9  0.984  −116.7  260.8  0.985  −127.1  291.4  0.958 
Cloxacillin  −645.4  409.7  0.998  −1220.8  596.0  0.995  −599.1  350.9  0.987  −843.4  402.4  0.966  −237.5  250.4  0.912 
Oxacillin  −199.5  243.2  0.977  −1027.7  539.6  0.964  −702.3  446.7  0.981  −751.2  418.1  0.987  −263.9  358.1  0.997 
Penicillin “G”  −4.5  219.2  0.924  −355.9  419  0.946  −387.2  484.2  0.997  −249.1  322.0  0.975  −230.1  419.2  0.946 
Cephalexin  −327  195.0  0.922  −794.7  437.4  0.969  −781.2  445.3  0.992  −909.5  425.4  0.972  −760.5  414.5  0.967 
Cefadroxil  −505.1  290.9  0.972  −682.3  431.8  0.975  −672.8  428.1  0.998  −617.8  380.3  0.990  −834.6  470.7  0.975 
Cefoperazone  −558.4  340.4  0.982  −640.2  350.6  0.964  −441.4  280.0  0.985  −405.5  240.1  0.971  −638.1  415.6  0.974 
Ceftiofur  −528.5  310.8  0.993  −779.9  402.2  0.912  −572.1  663.3  0.995  −1012.4  485.0  0.997  −794.9  438.6  0.997 
Cefuroxime  −539.4  333.5  0.986  −768.5  463.0  0.979  −481.4  366.0  0.988  −852.7  460.6  0.980  −538.1  337.9  0.937 
Tetracyclines
Chlortetracycline  −307.6  174.3  0.994  −27.9  80.3  0.959  −445.1  217.2  0.963  −625.2  262.0  0.988  −622.5  305.1  0.906 
Oxytetracycline  −140.4  115.7  0.982  −572.2  324.9  0.947  −614.6  293.8  0.975  −438.8  217.1  0.911  −455.5  245.5  0.958 
Tetracycline  −182.7  134.3  0.984  −620.3  271.8  0.947  −720.5  326.1  0.922  −481.5  245.9  0.986  −589.3  297  0.953 
Quinolones
Ciprofloxacin  −929.3  324.9  0.995  −1126.0  385.2  0.983  −963.9  337.1  0.986  −1257.6  371.5  0.992  −1322.7  452.2  0.969 
Enrofloxacin  −835.4  287.7  0.991  −709.9  231.9  0.912  −966.7  315.2  0.991  −1119.5  319.6  0.980  −1060.4  354.7  0.957 
Marbofloxacin  −995.7  318.1  0.996  −650.4  216.1  0.919  −1131.9  363.4  0.991  −1246.7  359.7  0.990  −975.7  351.0  0.982 
Macrolides and neomycin
Erythromycin  −428.3  211.0  0.994  −317.2  211.6  0.989  −159.4  109.7  0.986  −350.2  225.4  0.973  −521.5  233.9  0.977 
Neomycin  −369.3  161.6  0.993  −215.2  153.7  0.960  −223.3  111.3  0.985  −300.3  177.0  0.953  −527.0  170.3  0.986 
Lincomycin  −243.6  207.5  0.962  −376.8  234.6  0.974  −644.3  262.1  0.997  −326.9  195.1  0.965  −610.0  270.5  0.989 
Tilmicosin  −398.6  193.1  0.997  −278.4  226.7  0.988  −493.5  228.4  0.974  −97.6  137.6  0.975  −364.1  179.8  0.987 
Tylosin  −262.5  183.7  0.985  −366.9  267.8  0.977  −314.5  213.7  0.988  −87.2  174.6  0.968  −271.7  177.0  0.948 
Table 3.

Minimum inhibitory concentrations (μg/l) for test bacteria of the genus Geobacillus and maximum residue limits (μg/l) in milk.

Antibiotics  MRL  G. stearothermophilus  G. thermoleovorans  G. vulcani  G. kaustophilus  G. thermocatenulatus 
Beta-lactams
Amoxycillin 
Ampicillin 
Cloxacillin  30  38  114  54  148  12 
Oxacillin  30  90  40  66 
Penicillin “G” 
Cephalexin  100  65  76  59  151  77 
Cefadroxil  –  61  43  37  46  39 
Cefoperazone  50  47  76  40  55  70 
Ceftiofur  100  52  70  37  124  76 
Cefuroxime  –  44  50  22  78  52 
Tetracyclines
Chlortetracycline  100  60  149  260  178 
Oxytetracycline  100  19  70  135  112  87 
Tetracycline  100  26  248  205  101  117 
Quinolones
Ciprofloxacin  100  749  903  782  2667  970 
Enrofloxacin  100  849  1593  1217  3430  1167 
Marbofloxacin  75  1378  1408  1357  3034  659 
Macrolides and neomycin
Erythromycin  40  110  33  33  43  194 
Lincomycin  150  20  46  291  41  190 
Neomycin  1500  203  36  114  66  1360 
Tilmicosin  50  118  18  164  114 
Tylosin  50  29  26  32  44 

With respect to penicillins, G. stearothermophilus and G. thermocatenulatus showed great sensitivity toward these molecules, since their MIC values were low. In contrast, G. thermoleovorans, G. kaustophilus and G. vulcani exhibited MICs of penicillins between 1.5 (3μg/l of ampicillin, G. kaustophilus) and 12.8 times higher (90μg/l of oxacillin, G. thermoleovorans) than those obtained by G. stearothermophilus (Table 3).

With respect to cephalosporins, the five test bacteria exhibited similar susceptibilities for the five cephalosporins studied, since their MIC values were between 37μg/l of ceftiofur for G. vulcani and 151μg/l of cephalexin for G. kaustophilus. In addition, the MICs of cephalosporins were higher than those observed for penicillins for all the test bacteria studied.

With regard to tetracyclines, G. stearothermophilus exhibited a high level of susceptibility to all three tetracyclines, in comparison to the other test bacteria, with the exception of G. thermoleovorans (which showed MIC values of 9μg/l for chlortetracycline and 70μg/l for oxytetracycline) and G. thermocatenulatus (which showed a MIC value for 87μg/l of oxytetracycline). On the other hand, G. vulcani exhibited lower susceptibility to tetracyclines than G. stearothermophilus (Table 3).

It should be noted that none of the five test bacteria analyzed showed susceptibility toward the three fluoroquinolones, since they had to be present at concentrations between 659μg/l (marbofloxacin, G. thermocatenulatus) and 3430μg/l (enrofloxacin, G. kaustophilus) to produce noticeable inhibitory halos (Table 3).

Table 3 shows that the five test bacteria exhibited adequate sensitivities for tylosin residues, but lower for tilmicosin, erythromycin–neomycin (with the exception of G. stearothermophilus and G. thermocatenulatus) and lincomycin (with the exception of G. vulcani and G. thermocatenulatus).

In the literature that we reviewed, we found reports only mentioning the detection limits of G. stearothermophilus in Petri dishes. Nouws et al.22, for example, reported similar detection limits in cow milk samples for the five penicillins (amoxycillin, ampicillin, cloxacillin, oxacillin, and penicillin) and for cephalexin, cefoperazone, ceftiofur, cefuroxime and tylosin. Similarly, in a previous study, we obtained detection limits similar to those reported in Table 3 for amoxycillin, ampicillin, penicillin, cephalexin, cefoperazone and tylosin in sheep milk samples, although we did not observe inhibitions when the milk contained quinolone residues1.

Determination of similarities by the hierarchical cluster analysis

Figure 2 shows the associations of the 21 antibiotics determined by cluster analysis using the MICs of the evaluated five test bacteria. The figure shows the formation of two large clusters (Cluster “A” and Cluster “B”), which reveal two different types of antimicrobial susceptibilities for these test bacteria.

Figure 2.

Results of the cluster analysis applied to the minimum inhibitory concentrations (MICs) obtained for each test bacterium.

(0.22MB).

Cluster “A” (Euclidean distance less than 4) includes antibiotics with lower MICs (beta-lactams, tetracyclines, macrolides and lincomycin), as described above. The first associations occur for the group of penicillins, cephalosporins and tylosin, which have low MICs, followed by tetracyclines and other antimicrobials (macrolides). Finally, neomycin joins Cluster “A” with a greater Euclidean distance.

Cluster “B” (Euclidean distance greater than 4) consists of fluoroquinolones, which have high MICs and finally join Cluster “A” at a high Euclidean distance (greater than 20). Thus, the low susceptibility of thermophilic bacteria to these antimicrobials is highlighted.

This association of antibiotics for the five Geobacillus indicates a high sensitivity of these thermophilic bacteria toward penicillins and cephalosporins followed by a medium sensitivity for tetracyclines and a low sensitivity for quinolones. In addition, sensitivity studies with G. stearothermophilus indicate a similar behavior when these antibiotics are analyzed in cow22 and ewe1 milk.

To establish a cluster of test bacteria based on susceptibility associations, fluoroquinolones were removed from the analysis because they exhibited high MIC values. Figure 3 shows a cluster made up of the MICs of 18 antibiotics (Table 3) that exhibited inhibitory effects toward the bacteria evaluated. This figure shows two groups: Group A (G. stearothermophilus and G. thermocatenulatus), with a Euclidean distance similar to 1.0, and Group B (G. thermoleovorans, G. kaustophilus and G. vulcani), with a Euclidean distance greater than 2.0. These associations can be attributed to the high susceptibilities of G. stearothermophilus and G. thermocatenulatus (Group A) toward penicillins, cephalosporins and other antimicrobials (erythromycin, tilmicosin and tylosin), and the similar susceptibilities of G. thermoleovorans, G. kaustophilus and G. vulcani (Group B) to other antimicrobials (aminoglycosides and macrolides), with the exception of G. vulcani (higher MICs of lincomycin and tilmicosin), which is later integrated into Group B.

Figure 3.

Dendrogram of thermophilic bacteria obtained by cluster analysis with minimum inhibitory concentrations.

(0.16MB).

Regarding the associations of different strains of the genus Geobacillus, it should be noted that previous studies have reported similar associations when analyzing gene sequences encoding 16S rRNA6,19–21. Nazina et al.21, for example, analyzed the 16S rDNA genes present in 26 strains of Geobacillus and constructed a phylogenetic tree using the neighbor-joining method and the bootstrap analysis contained in the Treecon software package29. The results showed the presence of a cluster composed of G. thermoleovorans, G. kaustophilus and G. vulcani, and another cluster composed of G. stearothermophilus and G. thermocatenulatus, in accordance with those determined in this work when the MICs were used as an associative variable. Similarly, Najar and Thakur19 obtained a phylogenetic tree using the associative neighbor-joining method for the 16S rDNA gene sequences corresponding to 19 strains of Geobacillus. The results indicated a cluster composed of G. thermoleovorans, G. lituanicus, G. kaustophilus and G. vulcani, into which a cluster containing G. stearothermophilus and G. thermocatenulatus was subsequently incorporated. This cluster of thermophilic bacteria is similar to the dendrogram in Figure 3, which uses the MIC values as a property of similarity. Brumm et al.6 also performed a phylogenetic analysis of the nucleotide sequences (16S rDNA) present in 24 strains of Geobacillus by applying neighbor-joining and BioNJ algorithms and highlighted a grouping similar to the cluster shown in Figure 3. The formation of a group composed mainly of G. thermoleovorans, G. vulcani and G. kaustophilus, followed by another group composed of G. thermocatenulatus and G. stearothermophilus, would reflect the evolutionary history of these thermophilic bacteria.

Due to the similarities between bacterial susceptibilities and bacterial ribosomal DNA (16S rDNA) of different strains of the genus Geobacillus, the MICs calculated in this work could be analyzed together with the information of the complete genome of these bacteria through the use of appropriate bioinformatic tools12. Thus, associations of susceptibilities with bacterial genes could be revealed.

Conclusions

In conclusion, it can be established that the cluster analysis dendrogram shows two different groups of thermophilic bacteria. The first one is formed by G. thermocatenulatus and G. stearothermophilus, while the second is made up of G. thermoleovorans, G. kaustophilus and G. vulcani.

Since the minimum inhibitory concentrations of G. thermocatenulatus and G. stearothermophilus are similar and lower than those observed for other Geobacillus, future bioassays in microtiter plates with G. thermocatenulatus spores should be optimized. The development of new bioassays using this test bacterium should improve some of the properties of current commercial methods, such as response time, specificity, detection limits and robustness, among others.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Acknowledgements

This research was carried out as part of the projects CAI+D́20 (PI50320220100184LI, Universidad Nacional del Litoral) and PICT 2841/2017 (Agencia Nacional de Promoción Científica y Tecnológica, Argentina).

References
[1]
R. Althaus, M. Berruga, A. Montero, M. Roca, M. Molina.
Evaluation of a microbiological multi-residue system on the detection of antibacterial substances in ewe milk.
Anal Chim Acta, 632 (2009), pp. 156-162
[2]
Association of Official Analytical Chemists (AOAC).
17th ed., The Association of Official Analytical Chemists, (2000), pp. 39-44
[3]
A. Balan, D. Ibrahim, R. Abdul Rahim, F. Ahmad Rashid.
Purification and characterization of a thermostable lipase from Geobacillus thermodenitrificans IBRL-nra.
Enzyme Res, 2012 (2012), pp. 1-8
[4]
O. Bezuidt, T. Makhalanyane, M. Gomri, K. Kharroub, D. Cowan.
Draft genome sequence of thermophilic Geobacillus sp. strain Sah69, isolated from Saharan Soil, Southeast Algeria.
Genome Announc, 3 (2015), pp. e01447-e1515
[5]
B. Bonev, J. Hooper, J. Parisot.
Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method.
J Antimicrob Chemother, 61 (2008), pp. 1295-1301
[6]
P. Brumm, P. De Maayer, D. Mead, D. Cowan.
Genomic analysis of six new Geobacillus strains reveals highly conserved carbohydrate degradation architectures and strategies.
Front Microbiol, 6 (2015), pp. 430
[7]
X. Chen, O. Stabnikova, J. Tay, J. Wang, S. Tay.
Thermoactive extracellular proteases of Geobacillus caldoproteolyticus, sp. nov., from sewage sludge.
Extremophiles, 8 (2004), pp. 489-498
[8]
Clinical Laboratory Standards Institute (CLSI).
28th ed., CLSI, (2019),
[9]
A. Coelho, R. Orlandelli.
Immobilized microbial lipases in the food industry: a systematic review.
Crit Rev Food Sci Nutr, 61 (2020), pp. 1689-1703
[10]
T. de Miguel Bouzas, J. Barros-Velazquez, T. Villa.
Industrial applications of hyperthermophilic enzymes: a review.
Protein Pept Lett, 13 (2006), pp. 645-651
[11]
A. Ebrahimpour, R. Rahman, M. Basri, A. Salleh.
High level expression and characterization of a novel thermostable, organic solvent tolerant, 1,3-regioselective lipase from Geobacillus sp. strain ARM.
Bioresour Technol, 102 (2011), pp. 6972-6981
[12]
M. Ellington, O. Ekelund, F. Aarestrup, R. Canton, M. Doumith, C. Giske, H. Grundman, H. Hasman, M. Holden, K. Hopkins, J. Iredell, G. Kahlmeter, C. Köser, A. MacGowan, D. Mevius, M. Mulvey, T. Naas, T. Peto, J. Rolain, Ø. Samuelsen, N. Woodford.
The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee.
Clin Microbiol Infect, 23 (2017), pp. 2-22
[13]
International Dairy Federation (IDF).
Milk and milk products. Guidelines for a standardized description of 283 microbial inhibitor tests. IDF Standard No. 183:2003.
IDF, (2003), pp. 284
[14]
International Dairy Federation (IDF).
IDF, (2014), pp. 474
[15]
J. Jardine.
Potential bioremediation of heavy metal ions, polycyclic aromatic hydrocarbons and biofilms with South African hot spring bacteria.
Bioremediat J, 26 (2022), pp. 261-269
[16]
A. Khaswal, N. Chaturvedi, S. Mishra, P. Kumar, P. Paul.
Current status and applications of genus Geobacillus in the production of industrially important products – a review.
Folia Microbiol, 67 (2022), pp. 389-404
[17]
S. Madhuvanthi, S. Jayanthi, S. Suresh, A. Pugazhendhi.
Optimization of consolidated bioprocessing by response surface methodology in the conversion of corn stover to bioethanol by thermophilic Geobacillus thermoglucosidasius.
Chemosphere, 304 (2022), pp. 135242
[18]
M.Y. Mir, S. Hamid, G. Rohela, J. Parray, A. Kamili.
Composting and bioremediation potential of thermophiles.
1st ed., John Wiley & Sons Inc., (2021), pp. 143-174
[19]
I. Najar, N. Thakur.
A systematic review of the genera Geobacillus and Parageobacillus: their evolution, current taxonomic status and major applications.
Microbiology, 166 (2020), pp. 800-816
[20]
T. Nazina, T. Tourova, A. Poltaraus, E. Novikova, A. Grigoryan, A. Ivanova, A. Lysenko, V. Petrunyaka, G. Osipov, S. Belyaev, M. Ivanov.
Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans.
Int J Syst Evol Microbiol, 51 (2001), pp. 433-446
[21]
T. Nazina, D. Sokolova, A. Grigoryan, N. Shestakova, E. Mikhailova, A. Poltaraus, T. Tourovaa, A. Lysenkoa, G. Osipovc, S. Belyaev.
Geobacillus jurassicus sp. nov., a new thermophilic bacterium isolated from a high-temperature petroleum reservoir, and the validation of the Geobacillus species.
Syst Appl Microbiol, 28 (2005), pp. 43-53
[22]
J. Nouws, H. van Egmond, I. Smulders, G. Loeffen, J. Schouten, H. Stegeman.
A microbiological assay system for assessment of raw milk exceeding EU maximum residue levels.
Int Dairy J, 9 (1999), pp. 85-90
[23]
G. Novik, V. Savich, O. Meerovskaya.
Geobacillus bacteria: potential commercial applications in industry, bioremediation, and bioenergy production.
Growing and handling of bacterial cultures, Intech Open, (2018), http://dx.doi.org/10.5772/intechopen.76053
[24]
A. Schumacher, T. Vranken, A. Malhotra, J. Arts, P. Habibovic.
In vitro antimicrobial susceptibility testing methods: agar dilution to 3D tissue-engineered models.
Eur J Clin Microbiol Infect Dis, 37 (2018), pp. 187-208
[25]
N. Siddharthan, R. Balagurunathan, N. Hemalatha.
A novel feather-degrading bacterial isolate Geobacillus thermodenitrificans PS41 isolated from poultry farm soil.
Arch Microbiol, 204 (2022), pp. 1-15
[26]
Statgraphics.
Statgraphics Centurion XV, version 15.2.06. Edicion Multilingüe.
StatPoint Inc., (2007),
[27]
C. Valls, O. Gallardo, T. Vidal, F. Pastor, P. Diaz, M. Roncero.
New xylanases to obtain modified eucalypt fibres with high-cellulose content.
Bioresour Technol, 101 (2010), pp. 7439-7445
[28]
C. Valls, M. Roncero.
Using both xylanase and laccase enzymes for pulp bleaching.
Bioresour Technol, 100 (2009), pp. 2032-2039
[29]
Y. Van de Peer, R. De Wachter.
Treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment.
Comput Appl Biosci, 10 (1994), pp. 569-570
[30]
Q. Wang, S. Guo, M. Ali, X. Song, Z. Tang, Z. Zhang, M. Zhang, Y. Luo.
Thermally enhanced bioremediation: a review of the fundamentals and applications in soil and groundwater remediation.
J Hazard Mater, 433 (2022), pp. 128749
[31]
S. Wiegand, U. Rabausch, J. Chow, R. Daniel, W. Streit.
Complete genome sequence of Geobacillus sp. strain GHH01, a thermophilic lipase-secreting bacterium.
Genome Announc, 1 (2013), pp. 1-2
[32]
D. Zeigler.
The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet?.
Microbiology, 160 (2014), pp. 1-11
Copyright © 2023. Asociación Argentina de Microbiología
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.ram.2019.01.002
No mostrar más