metricas
covid
Buscar en
Revista Colombiana de Reumatología
Toda la web
Inicio Revista Colombiana de Reumatología Evaluación de la inflamación en el laboratorio
Información de la revista
Vol. 17. Núm. 1.
Páginas 35-47 (marzo 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 17. Núm. 1.
Páginas 35-47 (marzo 2010)
Acceso a texto completo
Evaluación de la inflamación en el laboratorio
Laboratory evaluation of inflammation
Visitas
143713
Luis Alonso González Naranjo1, José Fernando Molina Restrepo2
1 Médico especialista en Medicina Interna y Reumatología. Profesor asistente, sección de Reumatología, Hospital Universitario San Vicente de Paúl, Universidad de Antioquia. Medellín, Colombia
2 Médico especialista en Medicina Interna y Reumatología. Profesor asociado de Reumatología, CES. Clínica Las Américas, Medellín, Colombia
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

La respuesta de fase aguda refleja la inflamación tanto aguda como crónica en curso y se presenta en una amplia variedad de condiciones inflamatorias como infecciones, trauma, cirugías, quemaduras, neoplasias, enfermedades reumáticas inflamatorias y ciertas reacciones inmunes a drogas. La velocidad de sedimentación globular (VSG) y la presencia de leucocitosis con desviación a la izquierda son marcadores diagnósticos de enfermedades inflamatorias e infecciosas. Además, la medición de los niveles séricos de las proteínas de fase aguda, particularmente la proteína C reactiva (PCR), es útil en tres situaciones patológicas: infección, inflamación aguda o crónica y en la evaluación del riesgo metabólico. Procalcitonina es un marcador útil de sepsis e infecciones graves. Los niveles elevados de ferritina son característicos de la enfermedad de Still del adulto y el síndrome hemofagocítico, ambos asociados con la inflamación. Aunque los niveles séricos de citoquinas son cruciales para la generación de la inflamación, su utilidad en la clínica está aún bajo investigación. Las concentraciones séricas de los inhibidores de citocinas o receptores solubles de citoquinas, podría aportar información importante para el seguimiento de las enfermedades autoinflamatorias.

Palabras clave:
inflamación
proteínas de fase aguda
enfermedades reumáticas
citoquinas
proteína C reactiva
velocidad de sedimentación globular
Summary

The acute phase response reflects of inflammation both acute and ongoing chronic inflammation and occurs in a wide variety of inflammatory conditions such as infections, trauma, surgery, burns, malignancies, inflammatory rheumatic and certain immune reactions drug. The erythrocyte sedimentation rate and leukocytosis with left shift are diagnostic markers for inflammatory and infectious diseases. The levels of acute-phase proteins, especially C-reactive protein, are used to assess both the presence of inflammation and any response to treatment. The measurement of C-reactive protein levels is useful in three types of pathological situation: infection, acute or chronic inflammation, and evaluation of metabolic risk. Procalcitonin is an useful marker of sepsis and severe infection. High levels of ferritin are characteristic of adult-onset Still's disease and hemophagocytic syndrome, both associated with inflammation. Although serum levels of cytokines are crucial for the generation of inflammation, their usefulness in the clinic is still under investigation. Serum concentrations of cytokine inhibitors or soluble cytokine receptors could provide important information for monitoring autoinflammatory diseases.

Key words:
inflammation
acute-phase proteins
rheumatic diseases
cytokines
C-reactive protein
erythrocyte sedimentation rate
El Texto completo está disponible en PDF
Referencias
[1.]
C. Gabay, I. Kushner.
Acute-phase proteins and other systemic responses to inflammation.
N Engl J Med, 340 (1999), pp. 448-454
[2.]
J.J. Morley, I. Kushner.
Serum C-reactive protein levels in disease.
Ann NY Acad Sci, 389 (1982), pp. 406-418
[3.]
J.D. Gitlin, H.R. Colten.
Molecular biology of the acute phase plasma proteins.
Lymphokines, pp. 123-153
[4.]
E. Malle, F.C. De Beer.
Human serum amyloid A (SAA) prote a prominent acute-phase reactant for clinical practice. Eur.
J. Clin Invest, 26 (1996), pp. 427-435
[5.]
E. Dayer, J.M. Dayer, P. Roux-Lombard, Primer.
the practical use of biological markers of rheumatic and systemic inflammatory diseases.
Nat Clin Pract Rheumatol, 3 (2007), pp. 512-520
[6.]
J.E. Volamakis.
Acute-phase proteins in rheumatic disease.
Arthritis and allied conditions, 5th, pp. 505-516
[7.]
A.S. Wiik, M.J. Fritzler.
Laboratory tests in rheumatic disorders.
Rheumatology, 4th, pp. 219-232
[8.]
W.S. Tillett, T. Francis Jr..
Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus.
J Exp Med, 52 (1930), pp. 561-571
[9.]
J. Hurlimann, J.H. Thorbecke, G.M. Hochwald.
The liver as the site of C reactive protein formation.
J Exp Med, 123 (1966), pp. 365-378
[10.]
A. Mackiewicz, T. Speroff, M.K. Ganapathi, I. Kushner.
Effects of cytokine combinations on acute phase protein production in two human hepatoma cell lines.
J Immunol, 146 (1991), pp. 3032-3037
[11.]
J.E. Volamakis.
Human C-reactive prote expression structure function.
Mol Immunol, 38 (2001), pp. 189-197
[12.]
T.W. Du Clos, C. Mold.
The role of C-reactive protein in the resolution of bacterial infection.
Curr Opin Infect Dis, 14 (2001), pp. 289-293
[13.]
L. Marnell, C. Mold, T.W. Du Clos.
C-reactive protein: ligands, receptors and role in inflammation.
Clin Immunol, 117 (2005), pp. 104-111
[14.]
D. Gershow, S. Kim, N. Brot, et al.
C-reactive protein binds to apoptotic cells, protects the cell from assembly to the terminal complement components, and sustains an anti-inflammatory innate immune response: implications for systemic autoimmunity.
J Exp Med, 192 (2000), pp. 1353-1363
[15.]
M.B. Pepys, G.M. Hirschfield.
C-reactive protein: a critical update.
J Clin Invest, 111 (2003), pp. 1805-1812
[16.]
S. Verma, S. Hong Li, M. Badiwala, R. Weisel, et al.
Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein.
Circulation, 105 (2002), pp. 1890-1896
[17.]
D.M. Vigushin, M.B. Pepys, P.N. Hawkins.
Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease.
J Clin Invest, 91 (1993), pp. 1351-1357
[18.]
S.P. Ballou, I. Kushner.
Laboratory evaluation of inflammation.
Kelley's Textbook of Rheumatology, 7th, pp. 720-727
[19.]
J.J. Morley, I. Kushner.
Serum C-reactive protein levels in disease.
Ann NY Acad Sci, 389 (1982), pp. 406-418
[20.]
N.R. Cook, J.E. Buring, P.M. Ridker.
The effect of including C-reactive protein in cardiovascular risk prediction models for women.
Ann Intern Med, 145 (2006), pp. 21-29
[21.]
S.M. Toloza, A.G. Uribe, G. McGwin Jr., et al.
Systemic lupus erythematosus in a multiethnic US cohort (LUMINA). XXIII. Baseline predictors of vascular events.
Arthritis Rheum, 50 (2004), pp. 3947-3957
[22.]
McQueen FM, Stewart N, Crabbe J, et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals progression of erosions despite clinical improvement. Ann Rheum Dis 19;58:156-163.
[23.]
C.B. Cohick, D.E. Furst, S. Quagliata, et al.
Analysis of elevated serum interleukin-6 levels in rheumatoid arthritis: correlation with erythrocyte sedimentation rate or C-reactive protein.
J Lab Clin Med, 123 (1994), pp. 721-727
[24.]
F. Wolfe, J.T. Sharp.
Radiographic outcome of recentonset rheumatoid arthritis: a 19-year study of radiographic progression.
[25.]
E.J. Ter Borg, G. Horst, P.C. Limburg, M.H. van Rijswijk, C.G. Kallenberg.
C-reactive protein levels during disease exacerbations and infections in systemic lupus erythematosus: a prospective longitudinal study.
J Rheumatol, 17 (1990), pp. 1642-1648
[26.]
H.M. Moutsopoulos, A.K. Mavridis, N.C. Acritidis, P.C. Avgerinos.
High C-reactive protein response in lupus polyarthritis.
Clin Exp Rheumatol, 1 (1983), pp. 53-55
[27.]
A. Spoorenberg, D. van der Heijde, E. de Klerk, et al.
Relative value of erythrocyte sedimentation rate and C-reactive protein in assessment of disease activity in ankylosing spondylitis.
J Rheumatol, 26 (1999), pp. 980-984
[28.]
C. Cooper, S. Snow, T.E. McAlindon, et al.
Risk factors for the incidence and progression of radiographic knee osteoarthritis.
[29.]
S.E. Bedell, B.T. Bush, rate. Erythrocyte sedimentation.
From folklore to facts.
Am J Med, 78 (1985), pp. 1001-1009
[30.]
ICSH recommendations for measurement of erythrocyte sedimentation rate.
International Council for Standardization in Haematology (Expert Panel on Blood Rheology).
J Clin Pathol, 46 (1993), pp. 198-203
[31.]
A. Miller, M. Green, D. Robinson.
Simple rule for calculating normal erythrocyte sedimentation rate.
BMJ, 22 (1983), pp. 286
[32.]
J. Molina, A.M. Bedoya, J. Márquez.
Laboratorio en enfermedades reumáticas, pp. 189-202
[33.]
T.-Y. Chuang, G.G. Hunder, D.M. Ilstrup, L.T. Kurland.
Polymyalgia rheumatica: a 10-year epidemiologic and clinical study.
Ann Intern Med, 97 (1982), pp. 672-680
[34.]
L.A. Healey.
Long-term follow-up of polymyalgia rheumatica: evidence for synovitis.
Semin Arthritis Rheum, 13 (1984), pp. 322-328
[35.]
G.G. Hunder, D.A. Bloch, B.A. Michel, et al.
The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis.
Arthritis Rheum, 33 (1990), pp. 1122-1128
[36.]
J.P. Bastard, M. Maachi, J.T. Van Nhieu, et al.
Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro.
J Clin Endocrinol Metab, 87 (2002), pp. 2084-2089
[37.]
R.M. Fincher, M.I. Page.
Clinical significance of extreme elevation of the erythrocyte sedimentation rate.
Arch Intern Med, 146 (1986), pp. 1581-1583
[38.]
G. Campuzano-Maya.
Uso y utilidad clínica de la eritrosedimentación.
Medicina & Laboratorio, 9 (2000), pp. 311-345
[39.]
B. Fautrel, G. Le Moël, B. Saint-Marcoux, et al.
Diagnostic value of ferritin and glycosylated ferritin in adult onset Still's disease.
J Rheumatol, 28 (2001), pp. 322-329
[40.]
B. Fautrel, E. Zing, J.L. Golmard, et al.
Proposal for a new set of classification criteria for adult-onset still disease.
Medicine, 81 (2002), pp. 194-200
[41.]
S. Vignes, G. Le Moël, B. Fautrel, B. Wechsler, P. Godeau, J.C. Piette.
Percentage of glycosylated serum ferritin remains low throughout the course of adult onset Still's disease.
Ann Rheum Dis, 59 (2000), pp. 347-350
[42.]
U. Emmenegger, A. Reimers, U. Frey, et al.
Reactive macrophage activation syndrome: a simple screening strategy and its potential in early treatment initiation.
Swiss Med Wkly, 132 (2002), pp. 230-236
[43.]
M.H. Lee, R.T. Means.
Extremely elevated serum ferritin levels in a University Hospital] associated diseases and clinical significance.
Am J Med, 98 (1995), pp. 566-571
[44.]
J.J. Cush.
Adult onset Still's disease.
Bull Rheum Dis, 49 (2000), pp. 6
[45.]
K. Nishiya, K. Hashimoto.
Elevation of serum ferritin levels as a marker for active systemic lupus erythematosus.
Clin Exp Rheumatol, 15 (1997), pp. 39-44
[46.]
M. Kawashima, M. Yamamura, M. Taniai, et al.
Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still's disease.
[47.]
Y. Kawaguchi, H. Terajima, M. Harigai, M. Hara, N. Kamatani.
Interleukin-18 as a novel diagnostic marker and indicator of disease severity in adult-onset Still's disease.
[48.]
J.P. Atkinson.
Complement system.
Kelley's Textbook of Rheumatology, 7th, pp. 342-355
[49.]
S.P. Tam, A. Flexman, J. Hulme, R. Kisilevsky.
Promoting export of macrophage cholesterol: the physiological role of a major acute-phase protein, serum amyloid A 2.1.
J Lipid Res, 43 (2002), pp. 1410-1420
[50.]
S.B. Su, W. Gong, J.L. Gao, et al.
A seven-transmembrane, G protein-coupled receptor, FPRL1, mediates the chemotactic activity of serum amyloid A for human phagocytic cells.
J Exp Med, 189 (1999), pp. 395-402
[51.]
R. He, H. Sang, R.D. Ye.
Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor.
FPRL1/LXA4R. Blood, 101 (2003), pp. 1572-1581
[52.]
R.H. Mullan, B. Bresnihan, L. Golden-Mason, et al.
Acute-phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NFkappaB- dependent signal transduction pathway.
Arthritis Rheum, 54 (2006), pp. 105-114
[53.]
G. Liuzzo, L.M. Biasucci, J.R. Gallimore, et al.
The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina.
N Engl J Med, 331 (1994), pp. 417-424
[54.]
G. Cunnane, S. Grehan, S. Geoghegan, et al.
Serum amyloid A in the assessment of early inflammatory arthritis.
J Rheumatol, 27 (2000), pp. 58-63
[55.]
B. Müller, M. Christ-Crain, E.S. Nylen, R. Snider, K.L. Becker.
Limits to the use of the procalcitonin level as a diagnostic marker.
Clin Infect Dis, 39 (2004), pp. 1867-1868
[56.]
M. Assicot, D. Gendrel, H. Carsin, J. Raymond, J. Guilbaud, C. Bohuon.
High serum procalcitonin concentrations in patients with sepsis and infection.
Lancet, 341 (1993), pp. 515-518
[57.]
L. Simon, F. Gauvin, D.K. Amre, P. Saint-Louis, J. Lacroix.
Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis.
Clin Infect Dis, 39 (2004), pp. 206-217
[58.]
H. Ugarte, E. Silva, D. Mercan, A. De Mendonça, J.L. Vincent.
Procalcitonin used as a marker of infection in the intensive care unit.
Crit Care Med, 27 (1999), pp. 498-504
[59.]
I. Delèvaux, M. André, M. Colombier, et al.
Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes?.
Ann Rheum Dis, 62 (2003), pp. 337-340
[60.]
R. Arkader, E.J. Troster, M.R. Lopes, et al.
Procalcitonin does discriminate between sepsis and systemic inflammatory response syndrome.
Arch Dis Child, 91 (2006), pp. 117-120
[61.]
V. Schwenger, J. Sis, A. Breitbart, K. Andrassy.
CRP levels in autoimmune disease can be specified by measurement of procalcitonin.
Infection, 26 (1998), pp. 274-276
[62.]
C.A. Scirè, L. Cavagna, C. Perotti, E. Bruschi, R. Caporali, C. Montecucco.
Diagnostic value of procalcitonin measurement in febrile patients with systemic autoimmune diseases.
Clin Exp Rheumatol, 24 (2006), pp. 123-128
[63.]
M.A. Navarro, R. Carpintero, S. Acín, et al.
Immuneregulation of the apolipoprotein A-I/C-III/A-IV gene cluster in experimental inflammation.
Cytokine, 31 (2005), pp. 52-63
[64.]
J.R. Nofer, C. Noll, R. Feuerborn, G. Assmann, M. Tepel.
Low density lipoproteins inhibit the Na+/H+ antiport in human platelets via activation of p38MAP kinase.
Biochem Biophys Res Commun, 340 (2006), pp. 751-757
[65.]
N. Hyka, J.M. Dayer, C. Modoux, et al.
Apolipoprotein A-I inhibits the production of interleukin-1beta and tumor necrosis factor-alpha by blocking contactmediated activation of monocytes by T lymphocytes.
Blood, 97 (2001), pp. 2381-2389
[66.]
S. Marchesi, G. Lupattelli, R. Lombardini, et al.
Acute inflammatory state during influenza infection and endothelial function.
Atherosclerosis, 178 (2005), pp. 345-350
[67.]
R.G. Lahita, E. Rivkin, I. Cavanagh, P. Romano.
Low levels of total cholesterol, high-density lipoprotein, and apolipoprotein A1 in association with anticardiolipin antibodies in patients with systemic lupus erythematosus.
Arthritis Rheum, 36 (1993), pp. 1566-1574
[68.]
Y.B. Park, S.K. Lee, W.K. Lee, et al.
Lipid profiles in untreated patients with rheumatoid arthritis.
J Rheumatol, 26 (1999), pp. 1701-1704
[69.]
P. Roux-Lombard, L. Punzi, F. Hasler, et al.
Soluble tumor necrosis factor receptors in human inflammatory synovial fluids.
Arthritis Rheum, 36 (1993), pp. 485-489
[70.]
C. Gabay, N. Cakir, F. Moral, et al.
Circulating levels of tumor necrosis factor soluble receptors in systemic lupus erythematosus are significantly higher than in other rheumatic diseases and correlate with disease activity.
J Rheumatol, 24 (1997), pp. 303-308
[71.]
K.M. Hull, E. Drewe, I. Aksentijevich, et al.
The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder.
Medicine, 81 (2002), pp. 349-368
[72.]
S. Stojanov, D.L. Kastner.
Familial autoinflammatory diseases: genetics, pathogenesis and treatment.
Curr Opin Rheumatol, 17 (2005), pp. 586-599
[73.]
C.A. Dinarello.
Blocking IL-1 in systemic inflammation.
J Exp Med, 201 (2005), pp. 1355-1359
[74.]
G. Sturfelt, P. Roux-Lombard, F.A. Wollheim, J.M. Dayer.
Low levels of interleukin-1 receptor antagonist coincide with kidney involvement in systemic lupus erythematosus.
Br J Rheumatol, 36 (1997), pp. 1283-1289
[75.]
Z.N. Tutuncu, A. Bilgie, L.G. Kennedy, A. Calin.
Interleukin-6, acute phase reactants and clinical status in ankylosing spondylitis.
Ann Rheum Dis, 53 (1994), pp. 425-426
[76.]
A. Uddhammar, K.G. Sundqvist, B. Ellis, S. Rantapää-Dahlqvist.
Cytokines and adhesion molecules in patients with polymyalgia rheumatica.
Br J Rheumatol, 37 (1998), pp. 766-769
[77.]
C.M. Weyand, J.W. Fulbright, G.G. Hunder, J.M. Evans, J.J. Goronzy.
Treatment of giant cell arteritis: interleukin-6 as a biologic marker of disease activity.
Copyright © 2010. Asociación Colombiana de Reumatología
Descargar PDF
Opciones de artículo