metricas
covid
Buscar en
Revista Española de Geriatría y Gerontología
Toda la web
Inicio Revista Española de Geriatría y Gerontología Características neuropatológicas y moleculares de la enfermedad de Alzheimer
Información de la revista
Vol. 42. Núm. 2.
Páginas 103-110 (marzo 2007)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 42. Núm. 2.
Páginas 103-110 (marzo 2007)
Revisión
Acceso a texto completo
Características neuropatológicas y moleculares de la enfermedad de Alzheimer
Neuropathological and molecular characteristics of Alzheimer’s disease
Visitas
13306
José Rodrigoa,
Autor para correspondencia
rodmart@cajal.csic.es

Correspondencia: Prof. Dr. J. Rodrigo. Instituto Cajal. Avenida del Doctor Arce, 37. 28002 Madrid. España.
, Ana Martíneza, Ana Patricia Fernándeza, Julia Serranoa, María Luisa Benturaa, Esther Morenoa, Marta Aparicioa, Ricardo Martínez-Murilloa, José Regidorb
a Departamento de Neuroanatomía y Biología Celular. Instituto Cajal. Madrid. España
b Departamento de Morfología. Facultad de Ciencias de la Salud. Universidad de Las Palmas de Gran Canaria. Las Palmas de Gran Canaria. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

La enfermedad de Alzheimer (EA) es la enfermedad neurodegenerativa más prevalente entre las personas mayores de 65 años. Su impacto sanitario y social es extraordinario, ya que el número de mayores aumenta inexorablemente en nuestra sociedad. Por el momento sólo disponemos de hipótesis para explicar la etiología de la EA. Tales hipótesis se basan fundamentalmente en el análisis de las lesiones patológicas características de la EA, las placas seniles con su componente betaamiloide y los ovillos neurofibrilares constituidos por la proteína tau. En esta revisión queremos dar una visión actualizada del estado de conocimientos disponibles prestando atención a las primeras etapas asintomáticas del desarrollo de la enfermedad.

Palabras clave:
Enfermedad de Alzheimer
Histopatología
Pérdida neuronal
Edad dependencia
Cambios moleculares
Curso de la enfermedad
Abstract

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease among the elderly. Due to the significant increase in the number of older people in our society, the social and health impact of AD is enormous. Current explanations of the aetiology of AD are hypothetical, based mainly on the characteristic neuropathological lesions observed in this disease (senile plaques with the beta-amyloid peptide as the main component and neurofibrillary tangles due to abnormal hyperphosphorylation of the tau protein). The present review aims to provide an up-to-date overview of current knowledge of AD with particular emphasis on the asymptomatic initial stages of the disease.

Key words:
Alzheimer’s disease
Histopathology
Neuronal loss
Age dependence
Molecular changes
Follow-up
El Texto completo está disponible en PDF
Bibliografía
[1.]
Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde Allgemeine Zeitschrift fur Psychiatrie und Psychisch-gerichtliche Medizin. 1907; 64:146-8.
[2.]
J.C. Morris.
Clinical dementia rating: a reliable and valid diagnostic and stating measure for dementia of the Alzheimer’s type. Int.
Psychogeriatr, 9 (1997), pp. 173-179
[3.]
T. Arendt.
Alzheimer’s disease as a loss of differentiation control in a subset of neurons that retain immature features in the adult brain.
Neurobiol Aging, 21 (2000), pp. 783-796
[4.]
A. Toledano, M.I. Álvarez, M.G. Díaz.
Enfermedad de Alzheimer y otras demencias en ancianos.
Geriatrika, 15 (1999), pp. 32-38
[5.]
D.J. Selkoe.
Biochemistry of Alzheimer’s disease.
Basic neurochemistry, molecular, cellular and medical aspects, 5th ed,
[6.]
J. Balldin, C.G. Gottfries, G. Karlsson, G. Lindstedt, G. Langstrom, J. Walinder.
Dexamethasone suppresion test and serum prolactin in dementia disorders.
Br J Psychiatry, 143 (1983), pp. 277-281
[7.]
J.E. Christie, L.J. Walley, J. Bennie, H. Dick, L.M. Blackburn, D.H. Blakwood, G. Fink.
Characteristic plasma hormone changes in Alzheimer’s disease.
Br J Psychiatry, 150 (1987), pp. 674-681
[8.]
R.P. Iacono, R. Sandyk.
Alzheimers disease and the privotal role of the hypothalamus and the intrinsic opioid system.
Int J Neurosci, 32 (1987), pp. 711-714
[9.]
M. Raskind, E. Peskind, M.F. Rivard, R. Veith, R. Barnes.
Dexametasone suppression test and cortisol circadian rhythm in primary degenerative dementia.
Am J Psychiatry, 139 (1982), pp. 1468-1471
[10.]
J.E. Separ, R. Gerner.
Does the dexametasone suppression test distinguist dementia from depression?.
Am J Psychatry, 139 (1982), pp. 238-240
[11.]
J.T. Becker, F. Boller, O.L. López, J. Saxton, K. McGonigle.
The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis.
Arch Neurol, 51 (1994), pp. 585-594
[12.]
O.L. López, M.P. Gónzalez, J.T. Becker, C.F. Reynolds, A. Sudilovsky, S.T. DeKosky.
Symptoms of depression and psychosis in Alzheimer disease and fronto temporal dementia.
Neuropsychiatr Neuropsychol Behav Neurol, 8 (1996), pp. 154-161
[13.]
L. Teri, E.B. Larson, B.V. Reifler.
Behavioral disturbance in dementia of the Alzheimer’s type.
J Am Geriatr Soc, 386 (1988), pp. 1-6
[14.]
D. Kaufer.
Tratamiento de los síntomas no cognoscitivos en la enfermedad de Alzheimer.
Rev Neurol, 27 (1998), pp. S48-S50
[15.]
D.J. Selkoe.
Translating cell biology into therapeutic advances in Alzheimers disease.
Nature, 399 (1999), pp. A23-A31
[16.]
P. Fernández-Vizarra, A.P. Fernández, S. Castro-Blanco, J. Serrano, M.L. Bentura, R. Martínez-Murillo, et al.
Intra- and extracellular Abeta and PHF in clinically evaluated cases of Alzheimer’s disease.
Histol Histopathol, 19 (2004), pp. 823-844
[17.]
S. Gandy, P. Greengard.
Amyloidogenesis in Alzheimer’s disease: some possible therapeutic opportunities.
Trends Pharmacol Sci, 13 (1992), pp. 108-113
[18.]
J. Rodrigo, P. Fernández-Vizarra, S. Castro-Blanco, M.L. Bentura, M. Nieto, T. Gomez-Isla, et al.
Nitric oxide in the cerebral cortex of amyloid-precursor protein (SW) Tg2576 transgenic mice.
[19.]
H. Braak, E. Braak.
Neuropathological stageing of Alzheimer-related changes.
Acta Neuropathol, 82 (1991), pp. 239-259
[20.]
M. Goedert, R. Jakes.
Mutations causing neurodegenerative taupathies.
Biochem Biophys Acta, 1739 (2005), pp. 240-250
[21.]
J. Hardy, D.J. Selkoe.
The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics.
Science, 297 (2002), pp. 353-356
[22.]
R.E. Tanzy, L. Bertram.
Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective.
[23.]
M.J. Ball.
Neuronal loss, neurofibrillary tangles and granulovascular degeneration in the hippocampus with aging and dementia. A quantitative study.
Acta Neuropathol (Berl), 37 (1977), pp. 111-118
[24.]
D. Scheuner, C. Eckman, M. Jensen, X. Song, M. Citron, N. Suzuki, et al.
Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease.
Nat Med, 2 (1996), pp. 864-870
[25.]
B. Schonheit, R. Zarski, T.G. Ohm.
Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology.
Neurobiol Aging, 25 (2004), pp. 697-711
[26.]
C.A. Wilson, R.W. Doms, V.M. Lee.
Intracellular APP processsing and A beta production in Alzheimer disease.
J Neuropathol Exp Neurol, 58 (1999), pp. 787-794
[27.]
H. Yamaguchi, Y. Nakazato, S. Hiari, M. Shoji, Y. Harigaya.
Electron micrograph of difuse plaques. Initial stage of senile plaque formation in the Alzheimer Brain.
Am J Path, 135 (1989), pp. 593-597
[28.]
D.W. Dickson.
The pathogenesis of senile plaques.
J Neuropathol Exp Neurol, 56 (1997), pp. 321-339
[29.]
G.G. Glenner.
Amyloid deposits and amyloidosis. The fibrilloses.
New Engl J Med, 302 (1980), pp. 1333-1334
[30.]
Z.F. Kirschner, C. Abraham, D.J. Selkoe.
X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibres in Alzheimer’s disease indicates cross-conformation.
Proc Natl Acad Sci USA, 83 (1986), pp. 503-507
[31.]
D. Fraser, D.S. Yang, G. Yu, L. Levesque, M. Nishimura, S. Arawaka, et al.
Presenilin struture, function and role in Alzheimer’s disease.
Biochem Biophys Acta, 1502 (2000), pp. 1-15
[32.]
T. Iwatsubo, D.M. Mann, A. Odaka, N. Suzuki, Y. Ihara.
Amyloid beta protein (A beta) deposition: a beta 43 (43) precedes a beta 40 in Down syndrome.
Ann Neurol, 37 (1995), pp. 294-299
[33.]
Z.S. Khachaturian.
Diagnosis of Alzheimer’s disease.
Arch Neurol, 42 (1985), pp. 1097-1105
[34.]
S.S. Mirra, A. Heymman, D. McKeel.
The consortium to establish a registry for Alzheimer’s disease (CERAD), II: standardization of the neuropathologic assessment of Alzheimer’s diseasse.
Neurology, 41 (1991), pp. 479-486
[35.]
H. Braak, E. Braak, H. Grundke-Iqbal, K. Iqbal.
Occurrence of neuropil threads in the senile human brain and in Alzheimer’s disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques.
Neurosci lett, 65 (1986), pp. 351-355
[36.]
R.D. Terry.
Neuropathological changes in Alzheimer disease.
Prog Brain Res, 101 (1994), pp. 383-390
[37.]
H. Braak, K. Del Tredici.
Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-β formation.
Neurobiology of Aging, 25 (2004), pp. 713-718
[38.]
J. Avila.
Tau aggregation into fibrillar polymers. Taupathies.
FEBS Lett, 476 (2000), pp. 89-92
[39.]
E. Masliah, R.D. Terry, M. Alford, R. DeTeresa, L.A. Hansen.
Cortical and subcortical patterns af synaptophysin like immnoreactivity in Alzheimer’s disease.
Am J Pathol, 138 (1991), pp. 235-246
[40.]
R. Martínez-Murillo, J. Rodrigo.
The localization of cholinergic neurons and markers in the CNS.
CNS neurotranmitters and neuromodulators: Acetylcholine, pp. 1-37
[41.]
D.J. Selkoe.
Alzheimer’s disease: is a syneptic failure.
Science, 298 (2002), pp. 789-791
[42.]
M.M. Esiri, J.H. Morris.
Practical approach to the pathological diagnosis of dementia: important anatomical landmarks in the brain in dementia.
The neuropathology dementia,
[43.]
M.M. Esiri, R.C. Pearson, T.P. Powell.
The cortex of the primary auditory area in Alzheimer’s disease.
Brain Res, 336 (1986), pp. 385-387
[44.]
A. Delacourte, N. Sergeant, A. Wattez, D. Gauvreau, Y. Robitaiie.
Vulnerable neuronal subsets in Alzheimer’s and Pick’s diseases are distinguished by their tau isoform distribution and phosphorilation.
Ann Neurol, 43 (1998), pp. 139-204
[45.]
A. Delacourte, J.P. David, N. Sergeant, L. Buée, A. Wattez, P. Vermersch, et al.
The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease.
Neurology, 52 (1999), pp. 1158-1165
[46.]
P.R. Hof, K. Cox, J.H. Morrison.
Quantitative analysis of a vulnerable subset of pyramidal neuroins in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex.
J Comp Neurol, 301 (1990), pp. 44-54
[47.]
P.R. Hof, C. Bouras, D.P. Peri, D.L. Sparks, N. Mehta, J.H. Morrison.
Age-related distribution of neuropathologic changes in the cerebral cortex of patiens with Down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease.
Arch Neurol, (1995),
[48.]
G.K. Wilcock, M.M. Esiri, D.M. Bowen, A.O. Hughes.
The differential involvement of subcortical nuclei in senile dementia of Alzheimer’s type.
J Neurol Neurosurg Psychiatry, 51 (1988), pp. 842-849
[49.]
P.T. Francis.
Pyramidal neurone modulation: a therapeutic target for Alzheimer’s disease.
Neurodegeneration, 5 (1996), pp. 461-465
[50.]
G.K. Wilcock, M.M. Esiri, D.M. Bowen, C.C. Smith.
Alzheimer’s disease. Correlation of cortical choline acetyltranferase activituy with the severity of dementia and histological abnormalities.
J Neurol Sci, 57 (1982), pp. 407-417
[51.]
R.D. Terry, E. Masliah, D.P. Salmon, N. Butters, R. DeTeresa, R. Hill, et al.
Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment.
Ann Neurol, 30 (1991), pp. 572-580
[52.]
S.T. Dekosky, S.W. Scheff.
Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity.
Ann Neurol, 27 (1990), pp. 457-464
[53.]
S.S. Sisodia, W. Annaert, S.-H. Kim, B. DeStrooper.
γ-secretasa: never more enigmatic.
TINS, 24 (2001), pp. 11
[54.]
L. Bertram, M.B. McQueen, K. Mullin, D. Blacker, R.E. Tanzi.
Systematic Meta-Analyses of Alzheimer’s Disease Genetic Association Studies: The AlzGene Database.
[55.]
S. Fujihara, S.D. Brucki, M.S.G. Rocha, A.A. Carvalho, A.C. Piccolo.
Prevalence of presenile dementia in a tertiary outpatient clinic.
Arq. Neuro-Psiquiatr, 62 (2004), pp. 592-595
[56.]
U. Muller, N. Cristina, Z.W. Li, D.P. Wolfer, H.P. Lipp, T. Rulicke, et al.
Behavioral and anatomical deficits in mice homozygous for a modified beta-mayloid precursor protein gene.
Cell, 79 (1994), pp. 755-765
[57.]
I.I. Goate, M.C. Chartier-Harli, M. Mullan, J. Brown, F. Crawford, L. Fidani, et al.
Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease.
Nature, 349 (1991), pp. 704-706
[58.]
R.E. Tanzy, G. Vaula, D.M. Romano, M. Mortilla, T.L. Huang, R.G. Tupler, et al.
Assessment of amyloid beta-protein precursor gene mutations in a large set of familial and sporadic Alzheimer’s disease cases.
Am J Human Gent, 51 (1992), pp. 273-282
[59.]
L. Miravalle, T. Tokuda, R. Chiarle, G. Giaccone, O. Bugiani, F. Tagliavini, et al.
Substitutions at codon 22 of Alzheimer’s abeta peptide induce diverse confomational changes and appoptotic effects in human cerebral endothelial cells.
J Biol Chem, 275 (2000), pp. 27110-27116
[60.]
T.W. Kim, R.E. Tanzi.
Presenilins and Alzheirmer’s disease.
Curr Opin Neurobiol, 7 (1997), pp. 683-688
[61.]
D.J. Selkoe.
Cellular and molecular biology of β-amyloid precursor and Alzheimer’s disease.
The molecular and genetic basis of neurological disease, pp. 601-611
[62.]
G. Thinakaran, D.R. Borchelt, M.K. Lee, H.H. Slunt, L. Spitzer, G. Kim, et al.
Endoproteolysis of presenilin 1 and accumulation of processes derivates in vivo.
Neuron, 17 (1996), pp. 181-190
[63.]
I. D’Souza, P. Poorkaj, M. Hong, D. Nochlin, V.M. Lee, T.D. Bird, et al.
Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements.
Proc Natl Acad Sci USA, 96 (1999), pp. 5598-5603

Este trabajo ha sido soportado por el Ministerio de Ciencia y Tecnología. Proyecto 1310 2000-0405-P4-0, EET2001-2001-4844-C0 y el Proyecto 99/077-40 de la Fundación de la Caixa

Copyright © 2007. Sociedad Española de Geriatría y Gerontología
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos