metricas
covid
Buscar en
Revista Española de Geriatría y Gerontología
Toda la web
Inicio Revista Española de Geriatría y Gerontología Efecto del peróxido de hidrógeno en la producción mitocondr de radicales libr...
Información de la revista
Vol. 39. Núm. 1.
Páginas 29-34 (enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 39. Núm. 1.
Páginas 29-34 (enero 2004)
Acceso a texto completo
Efecto del peróxido de hidrógeno en la producción mitocondr de radicales libres en relación con el envejecimiento*
Effect of hydrogen peroxide on mitochondrial free radical production in relation to ageing
Visitas
9329
A. Sanz-Montero, R. Gredilla, A. Herrero, G. Barja de Quiroga
Autor para correspondencia
gbarja@bio.ucm.es

Correspondencia: Departamento de Fisiología. Fisiología Animal II. Universidad Complutense. José Antonio Novais, 2. 28040 Madrid. España.
Departamento de Fisiología. Fisiología Animal II. Facultad de Biología. Universidad Complutense. Madrid. España
Contenido relaccionado
Rev Esp Geriatr Gerontol. 2004;39:21410.1016/S0211-139X(04)74960-4
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Objetivos

el objetivo del presente estudio fue determinar si las mitocondrias dañadas oxidativamente, con un control respiratorio disminuido, producen más radicales libres que en condiciones normales. Esto es importante en relación con propuestas actuales sobre la teoría mitocondrial de envejecimiento por radicales libres.

Material y método

las mitocondrias fueron expuestas in vitro a un generador artificial de radicales libres. Se valoró el consumo de oxígeno mitocondrial en reposo (estado 4, sin ADP) y en estado activo (estado 3, con ADP). A partir de estos dos parámetros se obtuvo el valor del control respiratorio, que nos indica el grado de funcionalidad de las mitocondrias. Paralelamente, se midió la producción de H2O2 en la misma suspensión mitocondrial.

Resultados

el complejo I se vio más afectado por el daño inducido por radicales libres que los complejos II/III. Sin embargo, no se detectaron cambios estadísticamente significativos en la producción de especies reactivas del oxígeno en ninguno de los complejos respiratorios estudiados.

Conclusiones

los presentes resultados sugieren que las mitocondrias dañadas oxidativamente no tienen por qué producir necesariamente más radicales libres. Por tanto, la teoría del círculo vicioso de producción de radicales libres en relación con envejecimiento no es necesariamente cierta.

Palabras clave:
Envejecimiento
Mitocondria
Radicales libres
Peróxido de hidrógeno
Complejo I
Objectives

to ascertain whether oxidatively damaged mitochondria, showing a decreased respiratory control index, produce more free radicals than non-stressed mitochondria. This is relevant in relation to present models of the mitochondrial free radical theory of ageing.

Material and method

mitochondria were exposed in vitro to an artificial free radical generator. Oxygen consumption at rest (state 4, without adenosine 5'-diphosphate [ADP]) and under active phosphorylation (state 3, with ADP) was measured and the respiratory control ratio was calculated indicating the degree of functionality of the mitochondria. In the same mitochondria H2O2 production was measured in parallel.

Results

complex I was more affected than complex II/III by free radical-induced damage. However, mitochondrial production of reactive oxygen species remained unchanged in all the respiratory complexes.

Conclusions

the present results suggest that oxidatively damaged mitochondria do not necessarily increase their rate of free radical generation. Thus, the vicious circle theory of mitochondrial free radical generation in relation to ageing is not necessarily true.

Key words:
Ageing
Mitochondria
Free radicals
Hydrogen peroxide
Complex I
El Texto completo está disponible en PDF
Bibliografía
[1.]
D. Harman.
A theory based on free radical and radical chemistry.
J Gerontol, 11 (1956), pp. 298-300
[2.]
D. Harman.
The biological clock: the mitochondria?.
J Am Geriatr Soc, 20 (1972), pp. 99-117
[3.]
J. Miquel, A.C. Economos, J. Fleming, J. Johnson.
Mitochondrial role in cell aging.
Exp Gerontol, 15 (1980), pp. 579-591
[4.]
B. Barja.
Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?.
Biol Rev, 78 (2003), pp. 1-17
[5.]
Y. Kraytsberg, E. Nekhaeva, N.B. Bodyak, K. Khrapko.
Mutation and intracellular clonal expansion of mitochondrial genomes: two synergistic components of the aging process?.
Mech Ageing Dev, 124 (2003), pp. 49-53
[6.]
R. Gredilla, A. Sanz, M. López-Torres, G. Barja.
Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart.
FASEB J, 15 (2001), pp. 1-3
[7.]
R.G. Hansford, B.A. Hogue, V. Mildaziene.
Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age.
J Bioenerg Biomembr, 29 (1997), pp. 89-95
[8.]
B. Drew, S. Phaneuf, A. Dirks, C. Selman, R. Gredilla, A. Lezza, et al.
Effect of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle.
Am J Physiol Regul Integr Comp Physiol, 284 (2003), pp. R474-R480
[9.]
R.S. Sohal, H.H. Ku, S. Agarwal, M.J. Forster, H. Lai.
Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse.
Mech Ageing Dev, 74 (1994), pp. 121-133
[10.]
S. Moghaddas, C.L. Hoppel, E.J. Lesnefsky.
Aging defect at the Qo site of complex III augments oxyradical production in rat heart interfibrillar mitochondria.
Arch Bioch Biophys, 414 (2003), pp. 59-66
[11.]
De Grey ADNJ.
Mechanism underlying the age-related accumulation of mutant mitochondrial DNA: a critical review.
Genetics of mitochondrial diseases [en prensa],
[12.]
L. Mela, S. Seitz.
Isolation of mitochondria with emphasis on heart mitochondria from small amounts of tissue.
Methods Enzymol, 55 (1979), pp. 39-46
[13.]
G. Barja.
The quantitative measurement of H2O2 generation in isolated mitochondria.
J Bioenerg Biomembr, 34 (2002), pp. 227-233
[14.]
G. Barja.
Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity.
J Bioenerg Biomembr, 31 (1999), pp. 347-366
[15.]
N. Jha, O. Jurma, G. Lalli, Y. Liu, E.H. Pettus, J.T. Greenmyre, et al.
Glutathione depletion in PC12 results in selective inhibition of mitochondrial complex I activity. Implications for Parkinson's disease.
J Biol Chem, 275 (2001), pp. 26096-26101
[16.]
N.R. Seims, M.F. Anderson, L.M. Hobbs, J.Y. Kong, S. Phillips, J. Powell, et al.
Impairment of brain mitochondrial function by hydrogen peroxide.
Mol Brain Res, 77 (2000), pp. 176-184
[17.]
E.R. Taylor, F. Hurrell, R.J. Shannon, T.K. Lin, J. Hirst, M.P. Murphy.
Reversible glutathionylation of complex I increases mitochondrial superoxide formation.
J Biol Chem, 278 (2003), pp. 19603-19610
[18.]
A. Navarro, M.J. Sánchez del Pino, C. Gómez, J.L. Peralta, A. Boveris.
Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice.
Am J Physiol Regulatory Integrative Comp Physiol, 282 (2002), pp. R985-R992
[19.]
A. Herrero, G. Barja.
Sites and mechanism responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon.
Mech Ageing Dev, 98 (1997), pp. 95-111
[20.]
M. Lopez-Torres, R. Gredilla, A. Sanz, G. Barja.
Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.
Free Radic Biol Med, 32 (2002), pp. 1055-1064
[21.]
Y. Zhang, O. Marcillat, C. Giulivi, L. Ernster, K.J.A. Davies.
The oxidative inactivation of mitochondrial electron transport chain components and ATPasa. J. Biol Chem apoptosis: studies in vivo and in vitro.
FASEB J, 13 (1999), pp. 1055-1064
[22.]
J.M. Esteve, J. Mompo, J. García de la Asuncion, J. Sastre, M. Asensi, J. Boix, et al.
Oxidative damage to mitochondrial DNA and glutathione oxidation in apoptosis: studies in vivo and in vitro.
FASEB J, 13 (1999), pp. 1055-1064
[23.]
A.M. James, M.P. Murphy.
How mitochondrial damage affects cell function.
J Biomed Sci 1, 9 (2002), pp. 475-487
[24.]
V. Geromel, N. Kadhom, I. Cebalos-Picot, O. Ouari, A. Polidori, et al.
Superoxide induced massive apoptosis in cultured skin fibroblasts harboring the neurogenic ataxia retinitis pigmentosa (NARP) mutation in the ATPase-6 gene of the mitochondrial DNA.
Hum Mol Genet, 10 (2001), pp. 1221-1288
[25.]
B. Ventura, M.L. Genova, C. Bovina, G. Formiggini, G. Lenaz.
Control of oxidative phosphorylation by complex I in rat liver mitochondria: implication for aging.
Bioch Biophys Acta, 1553 (2002), pp. 249-260
[26.]
A. Atlante, A. Bobba, P. Calissano, E. Marra.
The apoptosis/necrosis transition in cerebellar granule cells depends on the mutual relantionship of the antioxidant and the proteolytic systems which regulate ROS production and cytochrome c release en route to death.
J Neurochem, 84 (2003), pp. 960-971
[27.]
B.L. Strehler.
Time, cells and aging.
pp. 1-456

Premio de Investigación Salgado Alba 2003.

Financiado con el proyecto SAF2002-01635 del Ministerio de Ciencia y Tecnología. Ricardo Gredilla y Alberto Sanz contaron durante la realización de este trabajo con una beca de la Consejería de Educación de la Comunidad de Madrid y de la Universidad Complutense de Madrid, respectivamente.

Copyright © 2004. Sociedad Española de Geriatría y Gerontología
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.regg.2023.101426
No mostrar más