covid
Buscar en
Revista Española de Nutrición Humana y Dietética
Toda la web
Inicio Revista Española de Nutrición Humana y Dietética Necesidades proteicas de los deportistas y pautas diétetico-nutricionales para ...
Información de la revista
Vol. 16. Núm. 1.
Páginas 25-35 (enero - marzo 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 1.
Páginas 25-35 (enero - marzo 2012)
Acceso a texto completo
Necesidades proteicas de los deportistas y pautas diétetico-nutricionales para la ganancia de masa muscular
Protein needs in athletes and dietary-nutrition guidelines to gain muscle mass
Visitas
45797
Aritz Urdampilletaa,b,
Autor para correspondencia
aritzurdampi@hotmail.com

Autor para correspondencia.
, Néstor Vicente-Salarc, José Miguel Martínez Sanzd
a Departamento de Farmacia y Ciencias de los Alimentos, Universidad del País Vasco, España
b Departamento de Educación Física y Deportiva, Universidad del País Vasco, España
c Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Alicante, España
d Programa de Tecnificación de Triatlón, Universidad de Alicante, Alicante, España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Resumen

Uno de los efectos más importantes del entrenamiento de la fuerza es el aumento de la hipertrofia muscular. Para compensar sus limitaciones genéticas, los deportistas deben tratar de optimizar los recursos dietético-nutricionales. El objetivo de la presente revisión es analizar la evidencia científica del aporte proteico del deportista según las diferentes modalidades deportivas. Dependiendo del gasto y el aporte energéticos del deportista, el aporte total de proteínas de la ingesta energética diaria suele suponer un 10–15%; sin embargo, es preferible calcular la cantidad proteica necesaria por kg de peso corporal de cada individuo en concreto y según la disciplina deportiva. En este sentido, se estima que para mantener la masa muscular los deportistas deben consumir 1,2–1,8g de proteínas/kg/día, y para aumentarla (0,5kg masa muscular/semana) deben mantener una ingesta proteica de 1,6–1,8g de proteína/kg/día, con un aumento de 400–500 kcal en su dieta habitual, entendiendo que estas necesidades variarán según la modalidad deportiva, la destrucción muscular generada, la masa muscular del atleta y los depósitos de glucógeno. Es importante señalar que los depósitos de glucógeno muscular y hepático vacíos aumentarían las necesidades proteicas para mantener la masa muscular. Un exceso de ingesta de proteínas (> 2g/kg/día) con las reservas de glucógeno agotadas podría causar un aumento de la concentración de cuerpos cetónicos y urea, y producir, entre otros, deshidratación precoz del deportista.

Palabras clave:
Músculos
Hipertrofia
Proteínas
Deportes
Ejercicio
Suplemento dietético deporte
Requerimientos nutricionales
Abstract

One of the most important effects of strength training is muscular hypertrophy. Athletes should optimize their nutritional management in order to compensate their own genetic limitations. The aim of this review is to analyze the scientific evidence concerning protein intake as a tool to achieve muscle hypertrophy. Depending on the expenditure and energy intake of athlete, a daily protein ranging between 10–15% of total dietary intake is needed. However in sports diets, it is preferable to estimate the amount of protein needed per kilogram of body weight in each individual. In this regard athletes should ingest an amount between 1.2g and 1.8g of proteins/kg of body mass/day to maintain their lean mass. In order to increase muscle mass (0.5kg/week), athletes should take between 1.6g and 1.8g of protein/kg/day with an increase of 400–500 kcal in their daily diet. These needs will depend on the sport, muscular catabolic status, the athlete's lean mass and glycogen stores. Protein needs will increase if muscle and liver glycogen stores are empty. Excess of protein intake (more than 2g/kg/day), with full glycogen stores, does not benefit the athlete and could cause an increase in circulating ketones and urea, thereby producing an early dehydration.

Keywords:
Muscles
Hypertrophy
Proteins
Sports
Exercise
Dietary supplement sport
Nutritional requirements
El Texto completo está disponible en PDF
Bibliografía
[1.]
R. Wolfe, S. George.
Stable isotopic tracers as metabolic probes in exercise.
Exercise and Sport Sciences Reviews, 21 (1993), pp. 1-31
[2.]
P. Reeds, T. Hutchens.
Protein requirements: From nitrogen balance to functional inpact.
J Nutr, 124 (1994), pp. 1754-1764
[3.]
N.A. Burd, J.E. Tang, D.R. Moore, S.M. Phillips.
Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences.
J Appl Physiol, 106 (2009), pp. 1692-1701
[4.]
P. Lemon.
Protein requirements and muscle mass/strength changes during intensive training in nocive bodybuilders.
J Appl Physiol, 73 (1992), pp. 767-775
[5.]
J. Poortmans.
Protein metabolism.
Principles of Exercise Biochemistry, Karger, (1993),
[6.]
S. Kleiner.
The role of meat in athete's diet.
Sports Science Exchange, 8 (1995), pp. 1-6
[7.]
B.B. Rasmussen, S.M. Phillips.
Contractile and nutritional regulation of human muscle growth.
Exerc Sport Sci Rev, 31 (2003), pp. 127-131
[8.]
M. Morifuji, A. Kanda, J. Koga, K. Kawanaka, M. Higuchi.
Post-exercise carbohydrate plus whey protein hydrolysates supplementation increases skeletal muscle glycogen level in rats.
Amino Acids, 38 (2010), pp. 1109-1115
[9.]
K.D. Tipton, B.B. Rasmussen, S.L. Miller, S.E. Wolf, S.K. Owens-Stovall, B.E. Petrini, et al.
Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise.
Am J Physiol Endocrinol Metab, 281 (2001), pp. 197-206
[10.]
M.G. Buse, S.S. Reid.
Leucine. A possible regulator of protein turnover in muscle.
J Clin Invest, 56 (1975), pp. 1250-1261
[11.]
R. Fitts, J. Widrick.
Muscle mechaniscs: adaptations with exercise-training.
Exercise and Sports Sciences Reviews, 24 (1996), pp. 427-473
[12.]
W. Parkhouse.
Regulation of skeletal muscle myofibrillar protein degradation: Relationship to fatigue and exercise.
International Journal of Biochemistry, 20 (1988), pp. 769-775
[13.]
K.D. Tipton, T.A. Elliott, A.A. Ferrando, A.A. Aarsland, R.R. Wolfe.
Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein.
Appl Physiol Nutr Metab, 34 (2009), pp. 151-161
[14.]
J.J. Hulmi, V. Kovanen, H. Selänne, W.J. Kraemer, K. Häkkinen, A.A. Mero.
Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression.
Amino Acids, 37 (2009), pp. 297-308
[15.]
J.J. Hulmi, J.S. Volek, H. Selänne, A.A. Mero.
Protein ingestion prior to strength exercise affects blood hormones and metabolism.
Med Sci Sports Exerc, 37 (2005), pp. 1990-1997
[16.]
D.S. Willoughby, J.R. Stout, C.D. Wilborn.
Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength.
Amino Acids, 32 (2007), pp. 467-477
[17.]
J. Mäestu, A. Eliakim, J. Jürimäe, I. Valter, T. Jürimäe.
Anabolic and catabolic hormones and energy balance of the male bodybuilders during the preparation for the competition.
J Strength Cond Res, 24 (2010), pp. 1074-1081
[18.]
D. Paddon-Jones, M. Sheffield-Moore, C.S. Katsanos, X.J. Zhang, R.R. Wolfe.
Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein.
Exp Gerontol, 41 (2006), pp. 215-219
[19.]
T.B. Symons, M. Sheffield-Moore, R.R. Wolfe, D. Paddon-Jones.
A moderate serving of high-quality protein maximally stimulates skeletal muscle protein synthesis in young and elderly subjects.
J Am Diet Assoc, 109 (2009), pp. 1582-1586
[20.]
A.E. Thalacker-Mercer, J.C. Fleet, B.A. Craig, N.S. Carnell, W.W. Campbell.
Inadequate protein intake affects skeletal muscle transcript profiles in older humans.
Am J Clin Nutr, 85 (2007), pp. 1344-1352
[21.]
L.L. Andersen, G. Tufekovic, M.K. Zebis, R.M. Crameri, G. Verlaan, M. Kjaer, et al.
The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength.
Metabolism, 54 (2005), pp. 151-156
[22.]
E. Blomstrand, J. Eliasson, H.K. Karlsson, R. Kohnke.
Branchedchain amino acids activate key enzymes in protein synthesis after physical exercise.
J Nutr, 136 (2006), pp. 269-273
[23.]
J.A. Nolles, A.M. Verreijen, R.E. Koopmanschap, M.W. Verstegen, V.V. Schreurs.
Postprandial oxidative losses of free and proteinbound amino acids in the diet: interactions and adaptation.
J Anim Physiol Anim Nutr, 3 (2008), pp. 320-331
[24.]
N.A. Ratamess, W.J. Kraemer, J.S. Volek, M.R. Rubin, A.L. Gomez, D.N. French, et al.
The effects of amino acid supplementation on muscular performance during resistance training overreaching.
J Strength Cond Res, 17 (2003), pp. 250-258
[25.]
J.M. Berardi, E.E. Noreen, P. Lemon.
Recovery from a cycling time trial is enhanced with carbohydrate-protein supplementation vs. isoenergetic carbohydrate supplementation.
J Int Soc Sports Nutr, 24 (2008), pp. 5-24
[26.]
S.P. Bird, K.M. Tarpenning, F.E. Marino.
Liquid carbohydrate/essential amino acid ingestion during a short-term bout of resistance exercise suppresses myofibrillar protein degradation.
Metabolism, 55 (2006), pp. 570-577
[27.]
T. Etheridge, A. Philp, P.W. Watt.
A single protein meal increases recovery of muscle function following an acute eccentric exercise bout.
Appl Physiol Nutr Metab, 33 (2008), pp. 483-488
[28.]
J.D. Buckley, R.L. Thomson, A.M. Coates, P.R. Howe, M.O. DeNichilo, M.K. Rowney.
Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise.
J Sci Med Sport, 13 (2010), pp. 178-181
[29.]
J.R. Hoffman, N.A. Ratamess, C.P. Tranchina, S.L. Rashti, J. Kang, A.D. Faigenbaum.
Effect of a proprietary protein supplement on recovery indices following resistance exercise in strength/power athletes.
Amino Acids, 38 (2010), pp. 771-778
[30.]
R.B. Kreider, C.P. Earnest, J. Lundberg, C. Rasmussen, M. Greenwood, P. Cowan, et al.
Effects of ingesting protein with various forms of carbohydrate following resistance-exercise on substrate availability and markers of anabolism, catabolism, and immunity.
J Int Soc Sports Nutr, 12 (2007), pp. 4-18
[31.]
E.L. McCleave, L. Ferguson-Stegall, Z. Ding, P. Doerner, B. Wang, L. Kammer, et al.
Effect of a low carbohydrate-moderate protein supplement on endurance performance in female athletes.
International Journal of Exercise Science: Conference Abstract Submissions, 2 (2010), pp. 345-356
[32.]
L. Ferguson-Stegall, E.L. McCleave, Z. Ding, L.M. Kammer, B. Wang, P.G. Doerner, et al.
The effect of a low carbohydrate beverage with added protein on cycling endurance performance in trained athletes.
Journal of Strength & Conditioning Research, 24 (2010), pp. 2577-2586
[33.]
C. Kerksick, T. Harvey, J. Stout, B. Campbell, C. Wilborn, R. Kreider, et al.
International Society of Sports Nutrition position stand: Nutrient timing.
J Int Soc Sports Nutr, (2008), pp. 5-17
[34.]
R. Bartels.
Weight training. How to lift and eat for strength and power.
Phys Sportsmed, 20 (1992), pp. 223-234
[35.]
G. Biolo, S.P. Maggi, B.D. Williams, K.D. Tipton, R.R. Wolfe.
Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans.
Am J Physiol, 268 (1995), pp. 514-520
[36.]
A. Chesley.
Changes in human muscle protein synthesis after resistance exercise.
Journal of Applied Physiology, 73 (1992), pp. 1383-1388
[37.]
M.R. Etzel.
Manufacture and use of dairy protein fractions.
J Nutr, 134 (2004), pp. 996-1002
[38.]
D.J. Forbes, M. Powers.
Cytosolic factors in nuclear transport: what's importin?.
Cell, 79 (1994), pp. 931-934
[39.]
A. Grandjean, et al.
What are the protein requeriments of athletes?.
Food and Nutrition News, 65 (1993), pp. 11
[40.]
M. Hernandez.
The protein efficiency ratios of 30:70 mixtures of animal: Vegetable protein are similar or higher than those of the animal foods alone.
J of Nutrition, 126 (1996), pp. 574-581
[41.]
J. Hicskson, I. Wolinsky.
Research directions in protein nutrition for athletes. In Nutrition in Exercise Sports.
CRC Press, (1994),
[42.]
R. Koopman, S. Walrand, M. Beelen, A.P. Gijsen, A.K. Kies, Y. Boirie, et al.
Dietary protein digestion and absorption rates and the subsequent postprandial muscle protein synthetic response do not differ between young and elderly men.
J Nutr, 139 (2009), pp. 1707-1713
[43.]
P. Lemon.
Beyond the zone: protein needs of active individuals.
Am Coll Nutr, 19 (2000), pp. 513-521
[44.]
P. Lemon.
Is increased dietary protein necessary or beneficial for individuals with a physically active lifestyle?.
Nutrition Reviews, 54 (1996), pp. 169-175
[45.]
S. Mettler, N. Mitchell, K.D. Tipton.
Increased protein intake reduces lean body mass loss during weight loss in athletes.
Med Sci Sports Exerc, 42 (2010), pp. 326-337
[46.]
D. Nemet, B. Wolach, A. Eliakim.
Proteins and amino acids supplementation in sports: are they truly necessary?.
Isr Med Assoc J, 7 (2005), pp. 328-332
[47.]
G. Paul.
Dietary protein requirements of physically active individuals.
Sports Medicine, 8 (1989), pp. 154-176
[48.]
T.B. Symons, S.E. Schutzler, T.L. Cocke, D.L. Chinkes, R.R. Wolfe, D. Paddon-Jones.
Aging does not impair the anabolic response to a protein-rich meal.
Am J Clin Nutr, 86 (2007), pp. 451-456
[49.]
K.D. Tipton, T.A. Elliott, M.G. Cree, A.A. Aarsland, A.P. Sanford, R.R. Wolfe.
Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise.
Am J Physiol Endocrinol Metab, 292 (2007), pp. 71-76
[50.]
Urdampilleta A, Martínez-Sanz JM. La dieta vegetariana: Limitaciones y sus posibles efectos en el rendimiento físico-deportivo. Lecturas: Educación Física y Deportes. Año 15, n.o 150, Noviembre, 2010. Revista digital. Disponible en: http://www.efdeportes.com
[51.]
M. Willians.
Nutritional supplements for strength trained athletes.
Sports Science Exchange, 6 (1993), pp. 1-6
[52.]
B. Lesourd.
Protein undernutrition as the major cause of decreased immune function in the elderly: clinical and functional implications.
Nutrition Reviews, 53 (1995), pp. 86-94
[53.]
G.W. Krissansen.
Emerging health properties of whey proteins and their clinical implications.
J Am Coll Nutr, 26 (2007), pp. 713-723
[54.]
J.R. Hoffman, N.A. Ratamess, C.P. Tranchina, S.L. Rashti, J. Kang, A.D. Faigenbaum.
Effect of protein-supplement timing on strength, power, and bodycomposition changes in resistance-trained men.
Int J Sport Nutr Exerc Metab, 19 (2009), pp. 172-185
[55.]
M. Dangin, Y. Boirie, C. Guillet, B. Beaufrere.
Influence of the protein digestion rate on protein turnover in young and elderly subjects.
J Nutr, 132 (2002), pp. 3228-3233
[56.]
R. Koopman, L.B. Verdijk, M. Beelen, M. Gorselink, A.N. Kruseman, A.J. Wagenmakers, et al.
Co-ingestion of leucine with protein does not further augment post-exercise muscle protein synthesis rates in elderly men.
Br J Nutr, 99 (2009), pp. 571-580
[57.]
S. Verhoeven, K. Vanschoonbeek, L.B. Verdijk, R. Koopman, W.K. Wodzig, P. Dendale, et al.
Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men.
Am J Clin Nutr, 89 (2009), pp. 1468-1475
[58.]
L.B. Verdijk, R.A. Jonkers, B.G. Gleeson, M. Beelen, K. Meijer, H.H. Savelberg, et al.
Protein supplementation before and after exercise does not further augment skeletal muscle hypertrophy after resistance training in elderly men.
Am J Clin Nutr, 89 (2009), pp. 608-616
[59.]
J.R. Alvero Cruz, M.D. Cabañas, A. Herrero, L. Martinez, C. Moreno, J. Porta, et al.
Protocolo de valoración de la composición corporal para el reconocimiento médico-deportivo.
Archivos de Medicina del Deporte, 131 (2010), pp. 166-179
[60.]
T.A. Elliot, M.G. Cree, A.P. Sanford, R.R. Wolfe, K.D. Tipton.
Milk ingestion stimulates net muscle protein synthesis following resistance exercise.
Med Sci Sports Exerc, 38 (2006), pp. 667-674
[61.]
S.M. Phillips, J.E. Tang, D.R. Moore.
The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons.
J Am Coll Nutr, 28 (2009), pp. 343-354
[62.]
C. Weideman, et al.
Effects of increased protein intake on muscle hypertrophy and strength following 13 weeks of resistance training.
Med Sci Sports Exerc, 22 (1990), pp. 37-39
[63.]
A.H. Manninen.
Protein hydrolysates in sports nutrition.
Nutr Metab (Lond), 6 (2009), pp. 38
[64.]
J.A. Calbet, J.J. Holst.
Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans.
Eur J Nutr, 43 (2004), pp. 127-139
[65.]
C.S. Katsanos, D.L. Chinkes, D. Paddon-Jones, X.J. Zhang, A. Aarsland, R.R. Wolfe.
Whey protein ingestion in elderly persons results in greater muscle protein accrual than ingestion of its constituent essential amino acid content.
Nutr Res, 28 (2008), pp. 651-658
[66.]
H. Fouillet, C. Gaudichon, F. Mariotti, C. Bos, J.F. Huneau, D. Tome.
Energy nutrients modulate the splanchnic sequestration of dietary nitrogen in humans: a compartmental analysis.
Am J Physiol Endocrinol Metab, 281 (2001), pp. 248-260
[67.]
E. Blomstrand, B. Saltin.
BCAA intake affects protein metabolism in muscle after but not during exercise in humans.
Am J Endocinol Metab, 281 (2001), pp. 365-374
[68.]
C.S. Katsanos, H. Kobayashi, M. Sheffield-Moore, A. Aarsland, R.R. Wolfe.
A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly.
Am J Physiol Endocrinol Metab, 291 (2006), pp. 381-387
[69.]
R. Koopman, A.J. Wagenmakers, R.J. Manders, A.H. Zorenc, J.M. Senden, M. Gorselink, et al.
Combined ingestion of protein and free leucine with carbohydrate increases postexercise muscle protein synthesis in vivo in male subjects.
Am J Physiol Endocrinol Metab, 288 (2005), pp. 645-653
[70.]
I. Rieu, M. Balage, C. Sornet, E. Debras, S. Ripes, C. Rochon-Bonhomme, et al.
Increased availability of leucine with leucine-rich whey proteins improves postprandial muscle protein synthesis in aging rats.
Nutrition, 23 (2007), pp. 323-331
[71.]
W.J. Kraemer, D.L. Hatfield, J.S. Volec, M.S. Fragala, J.L. Vingren, J.M. Anderson, et al.
Effects of amino acids supplement on physiological adaptations to resistance training.
Med Sci Sports Exerc, 4 (2009), pp. 1111-1121
[72.]
M.S. Stock, J.C. Young, L.A. Golding, L.J. Kruskall, R.D. Tandy, J.M. Conway-Klaass, et al.
The effects of adding leucine to pre and postexercise carbohydrate beverages on acute muscle recovery from resistance training.
Strength Cond Res, 24 (2010), pp. 2211-2219
[73.]
D.G. Burke, D.G. Candow, P.D. Chilibeck, L.G. MacNeil, B.D. Roy, M.A. Tarnopolsky, et al.
Effect of creatine supplementation and resistance-exercise training on muscle insulin-like growth factor in young adults.
Int J Sport Nutr Exerc Metab, 18 (2008), pp. 389-398
[74.]
P.J. Cribb, A.D. Williams, C.G. Stathis, M.F. Carey, A. Hayes.
Effects of whey isolate, creatine, and resistance training on muscle hypertrophy.
Med Sci Sports Exerc, 39 (2007), pp. 298-307
[75.]
A.S. Yalcin.
Emerging therapeutic potential of whey proteins and peptides.
Curr Pharm Des, 12 (2006), pp. 1637-1643
[76.]
B. Campbell, R.B. Kreider, T. Ziegenfuss, P. La Bounty, M. Roberts, D. Burke, et al.
International Society of Sports Nutrition position stand: protein and exercise.
J Int Soc Sports Nutr, 26 (2007), pp. 4-8
[77.]
R.B. Kreider, B. Campbell.
Protein for exercise and recovery.
Phys Sportsmed, 37 (2009), pp. 13-21
[78.]
S.R. Kimball.
The role of nutrition in stimulating muscle protein accretion at the molecular level.
Biochem Soc Trans, 35 (2007), pp. 1298-1301
[79.]
M. Tarnopolsky.
Protein requirements for endurance athletes.
Nutrition, 20 (2004), pp. 662-668
[80.]
C.P. Lambert, L.L. Frank, W.J. Evans.
Macronutrient considerations for the sport of bodybuilding.
Sports Med, 34 (2004), pp. 317-327
[81.]
J.M. Davis.
Carbohydrates, branched-chain amino acids and endurance: The central fatigue hypothesis.
Sports Science Exchange, 9 (1996), pp. 1-5
[82.]
K. Devolve.
Effects of carbohydrate and branch-chain amino acid ingestion on intermittent, hight intensity running.
Med Sci Sports Exerc, 29 (1997), pp. 125
[83.]
P.J. Atherton, K. Smith, T. Etheridge, D. Rankin, M.J. Rennie.
Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells.
Amino Acids, 38 (2010), pp. 1533-1539
[84.]
J.E. Tang, J.J. Manolakos, G.W. Kujbida, P.J. Lysecki, D.R. Moore, S.M. Phillips.
Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men.
Appl Physiol Nutr Metab, 32 (2007), pp. 1132-1138
[85.]
D. Kalman, S. Feldman, M. Martinez, D.R. Krieger, M.J. Tallon.
Effect of protein source and resistance training on body composition and sex hormones.
J Int Soc Sports Nutr, 4 (2007), pp. 4
[86.]
M. Beelen, M. Tieland, A.P. Gijsen, H. Vandereyt, A.K. Kies, H. Kuipers, et al.
Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery.
J Nutr, 138 (2008), pp. 2198-2204
[87.]
M. Dangin, C. Guillet, C. Garcia-Rodenas, P. Gachon, C. Bouteloup-Demange, K. Reiffers-Magnani, et al.
The rate of protein digestion affects protein gain differently during aging in humans.
J Physiol, 549 (2003), pp. 635-644
[88.]
R. Keith.
Nutritional status and lipid profiles of trained steroidusing bodybuilders.
Int J Sports Nutr, 6 (1996), pp. 247-254
[89.]
Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Am Diet Assoc. 2009;109: 509-27.
[90.]
E.L. Dillon, M. Sheffield-Moore, D. Paddon-Jones, C. Gilkison, A.P. Sanford, S.L. Casperson, et al.
Amino acid supplementation increases lean body mass, basal muscle protein synthesis, and insulin-like growth factor-I expression in older women.
J Clin Endocrinol Metab, 94 (2009), pp. 1630-1637
[91.]
G.L. Onambélé-Pearson, L. Breen, C.E. Stewart.
Influences of carbohydrate plus amino acid supplementation on differing exercise intensity adaptations in older persons: skeletal muscle and endocrine responses.
Age (Dordr), 32 (2010), pp. 125-138
[92.]
P.S. Genaro, L.A. Martini.
Effect of protein intake on bone and muscle mass in the elderly.
[93.]
A.J.M. Wagenmarkers.
Muscle amino acid metabolism at rest and during exercise in human physiology and metabolism.
Exercise and Sport Sciences Reviews, 26 (1998), pp. 287-314
[94.]
S.B. Racette.
Creatine supplementation atletic performance.
J Orthop Sports Phys Ther, 33 (2003), pp. 615-621
[95.]
D.R. Moore, M.J. Robinson, J.L. Fry, J.E. Tang, E.I. Glover, S.B. Wilkinson, et al.
Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men.
Am J Clin Nutr, 89 (2009), pp. 161-168
[96.]
R.L. Stearns, H. Emmanuel, J.S. Volek, D.J. Casa.
Effects of ingesting protein in combination with carbohydrate during exercise on endurance performance: a systematic review with metaanalysis.
J Strength Cond Res, 24 (2010), pp. 2192-2202
[97.]
J. Pérez-Guisado.
Rendimiento deportivo: glucógeno muscular y consumo protéico.
Apunt Medicina del’Esport, 159 (2008), pp. 142-152
Copyright © 2012. Asociación Española de Dietistas-Nutricionistas
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos