covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Algoritmo genético permutacional para el despliegue y la planificación de sist...
Información de la revista
Vol. 10. Núm. 3.
Páginas 344-355 (julio - septiembre 2013)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4618
Vol. 10. Núm. 3.
Páginas 344-355 (julio - septiembre 2013)
Open Access
Algoritmo genético permutacional para el despliegue y la planificación de sistemas de tiempo real distribuidos
Permutational genetic algorithm for the deployment and scheduling of distributed real time systems
Visitas
4618
Ekain Azketaa,
Autor para correspondencia
eazketa@ikerlan.es

Autor para correspondencia.
, J. Javier Gutiérrezb, Marco Di Natalec, Luís Almeidad, Marga Marcose
a IK4-Ikerlan Centro de Investigaciones Tecnológicas, Área de Tecnologías de Software, Mondragón, España
b Universidad de Cantabria, Grupo de Computadores y Tiempo Real, Santander, España
c Scuola Superiore Sant’Anna, Real-Time Systems Laboratory, Pisa, Italia
d Universidade do Porto, Departamento de Engenharia Eletrotécnica e de Computadores, Oporto, Portugal
e Universidad del País Vasco, Departamento de Ingeniería de Sistemas y Automática, Bilbao, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

El despliegue y la planificación de tareas y mensajes en sistemas de tiempo real distribuidos son problemas NP-difíciles (NP- hard), por lo que no existen métodos óptimos para solucionarlos en tiempo polinómico. En consecuencia, estos problemas son adecuados para abordarse mediante algoritmos genéricos de búsqueda y optimización. En este artículo se propone un algoritmo genético multiobjetivo basado en una codificación permutacional de las soluciones para abordar el despliegue y la planificación de sistemas de tiempo real distribuidos. Además de desplegar tareas en computadores y de planificar tareas y mensajes, este algoritmo puede minimizar el número de computadores utilizados, la cantidad de recursos computacionales y de comunicaciones empleados y el tiempo de respuesta de peor caso medio de las aplicaciones. Los resultados experimentales muestran que este algoritmo genético permutacional puede desplegar y planificar sistemas de tiempo real distribuidos de forma satisfactoria y en tiempos razonables.

Palabras clave:
Sistemas de tiempo real
Algoritmos de planificación
Algoritmos genéticos
Optimizaciones multiobjetivo
Abstract

The deployment and scheduling of tasks and messages in distributed real-time systems are NP-hard problems, so there are no optimal methods to solve them in polynomial time. Consequently, these problems are suitable to be approached with generic search and optimisation algorithms. In this paper we propose a multi-objective genetic algorithm based on a permutational solution encoding for the deployment and scheduling of distributed real-time systems. Besides deploying and scheduling tasks and messages, the algorithm can minimize the number of the used computers, the utilization of computing and networking resources and the average worst-case response times of the applications. The experiments show that this genetic algorithm can successfully synthesize complex distributed real-time systems in reasonable times.

Keywords:
Real-time systems
Scheduling algorithms
Genetic algorithms
Multiobjective optimisations.
Referencias
[Achterberg, 2009]
T. Achterberg.
SCIP: Solving Constraint Integer Programs.
Mathematical Programming Computation, 1 (2009), pp. 1-41
[Azketa et al., 2012a]
E. Azketa, J.J. Gutiérrez, J.C. Palencia, M.G. Harbour, L. Almeida, M. Marcos.
Schedulability analysis of multi-packet messages in segmented CAN.
In: Proceedings of the 17th IEEE International Conference on Emerging Technologies and Factory Automation,
[Azketa et al., 2011a]
E. Azketa, J. Uribe, M. Marcos, L. Almeida, J. Gutiérrez.
Permutational genetic algorithm for fixed priority scheduling of distributed real-time systems aided by network segmentation.
In: Proceedings of the 1st Workshop on Synthesis and Optimization Methods for Real-time Embedded Systems, pp. 13-18
[Azketa et al., 2011b]
E. Azketa, J. Uribe, M. Marcos, L. Almeida, J. Gutiérrez.
Permutational genetic algorithm for the optimized assignment of priorities to tasks and messages in distributed real-time systems.
In: Proceedings of the 8th IEEE International Conference on Embedded Software and Systems, pp. 958-965
[Azketa et al., 2012b]
E. Azketa, J.P. Uribe, M. Marcos, L. Almeida, J.J. Gutiérrez.
An empirical study of permutational genetic crossover and mutation operators on the fixed priority assignment in distributed real-time systems.
In: Proceedings of the IEEE International Conference on Industrial Technology, pp. 598-605
[Boyd et al., 2007]
S. Boyd, S. Kim, L. Vandenberghe, A. Hassibi.
A tutorial on geometric programming.
Optimization and Engineering, 8 (2007), pp. 67-127
[Chen and Lin, 2000]
W. Chen, C. Lin.
A hybrid heuristic to solve a task allocation problem.
Computers & Operations Research, 27 (2000), pp. 287-303
[Davare et al., 2007]
A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan, A. Sangiovanni- Vincentelli.
Period optimization for hard real-time distributed automotive systems.
In: Proceedings of the 44th Annual Design Automation Conference, pp. 278-283
[Davis, 1991]
L. Davis.
Handbook of genetic algorithms.
Arden Shakespeare, (1991),
[Deb et al., 2002]
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan.
A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6 (2002), pp. 182-197
[Di Natale and Stankovic, 1995]
M. Di Natale, J.A. Stankovic.
Applicability of simulated annealing methods to real-time scheduling and jitter control.
In: Proceedings of the 16th IEEE Real-Time Systems Symposium, pp. 190-199
[Di Natale et al., 2007]
M. Di Natale, W. Zheng, C. Pinello, P. Giusto, A. Sangiovanni-Vincentelli.
Optimizing end-to-end latencies by adaptation of the activation events in distributed automotive systems.
In: Proceedings of the 13th IEEE Real Time and Embedded Technology and Applications Symposium, pp. 293-302
[Dick and Jha, 2002]
R. Dick, N. Jha.
MOGAC: a multiobjective genetic algorithm for hardware-software cosynthesis of distributed embedded systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 17 (2002), pp. 920-935
[Garey et al., 1976]
M. Garey, D. Johnson, R. Sethi.
The complexity of flowshop and jobs- hop scheduling.
Mathematics of Operations Research, (1976), pp. 117-129
[Glover, 1986]
F. Glover.
Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research, 13 (1986), pp. 533-549
[Gutiérrez and Harbour, 1995]
J.J. Gutiérrez, M.G. Harbour.
Optimized priority assignment for tasks and messages in distributed hard real-time systems.
In: Proceedings of the 3rd Workshop on Parallel and Distributed Real-Time Systems, pp. 124-132
[Hamann et al., 2006]
A. Hamann, M. Jersak, K. Richter, R. Ernst.
A framework for modular analysis and exploration of heterogeneous embedded systems.
Real-Time Systems, 33 (2006), pp. 101-137
[Hladik et al., 2008]
P. Hladik, H. Cambazard, A. Déplanche, N. Jussien.
Solving a realtime allocation problem with constraint programming.
Journal of Systems and Software, 81 (2008), pp. 132-149
[Holland, 1975]
J. Holland.
Adaptation in natural and artificial systems.
University of Michigan Press, (1975),
[Kirkpatrick, 1984]
S. Kirkpatrick.
Optimization by simulated annealing: Quantitative studies.
Journal of Statistical Physics, 34 (1984), pp. 975-986
[Metzner and Herde, 2006]
A. Metzner, C. Herde.
RTSAT - An optimal and efficient approach to the task allocation problem in distributed architectures.
In: Proceedings of the 27th IEEE Real-Time Systems Symposium, pp. 147-158
[Minoux, 1986]
M. Minoux.
Mathematical programming: theory and algorithms.
John Wiley & Sons, (1986),
[Mitra and Ramanathan, 1993]
H. Mitra, P. Ramanathan.
A genetic approach for scheduling non- preemptive tasks with precedence and deadline constraints.
In: Proceedings of the Hawaii International Conference on System Sciences, pp. 556-556
[Monnier et al., 1998]
Y. Monnier, J. Beauvais, A. Deplanche.
A genetic algorithm for scheduling tasks in a real-time distributed system.
In: Proceedings of the 24th Euromicro Conference, pp. 708-714
[Palencia and Harbour, 1998]
J. Palencia, M. Harbour.
Schedulability analysis for tasks with static and dynamic offsets.
In: Proceedings of the 19th IEEE Real-Time Systems Symposium, pp. 26-37
[Palencia and Harbour, 1999]
J.C. Palencia, M.G. Harbour.
Exploiting precedence relations in the schedulability analysis of distributed real-time systems.
In: Proceedings of the 20th IEEE Real-Time Systems Symposium, pp. 328-339
[Pearl, 1984]
J. Pearl.
Heuristics: intelligent search strategies for computer problem solving.
Addison-Wesley, (1984),
[Pop et al., 2002]
P. Pop, P. Eles, Z. Peng.
Flexibility driven scheduling and mapping for distributed real-time systems.
In: Proceedings of the 8th International Conference on Real-Time Computing Systems and Applications, pp. 337-346
[Pop et al., 2003a]
P. Pop, P. Eles, Z. Peng.
Schedulability analysis and optimization for the synthesis of multi-cluster distributed embedded systems.
In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 184-189
[Pop et al., 2003b]
T. Pop, P. Eles, Z. Peng.
Design optimization of mixed time/eventtriggered distributed embedded systems.
In: Proceedings of the 1st IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, pp. 83-89
[Porto et al., 2000]
S. Porto, J. Kitajima, C. Ribeiro.
Performance evaluation of a parallel tabu search task scheduling algorithm.
Parallel Computing, 26 (2000), pp. 73-90
[Porto and Ribeiro, 1995]
S. Porto, C. Ribeiro.
A tabu search approach to task scheduling on hete-rogeneous processors under precedence constraints.
International Journal of High Speed Computing, 7 (1995), pp. 45-71
[Samii et al., 2009]
S. Samii, Y. Yin, Z. Peng, P. Eles, Y. Zhang.
Immune genetic algorithms for optimization of task priorities and flexray frame identifiers.
In: Proceedings of the 15th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 486-493
[Schrijver, 1998]
A. Schrijver.
Theory of linear and integer programming.
John Wiley & Sons Inc, (1998),
[Shang et al., 2007]
L. Shang, R. Dick, N. Jha.
SLOPES: Hardware-software cosynthesis of low-power real-time distributed embedded systems with dynamically reconfigurable FPGAs.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26 (2007), pp. 508-526
[Tindell et al., 1992]
K. Tindell, A. Burns, A. Wellings.
Allocating hard real-time tasks: an NP-hard problem made easy.
Real-Time Systems, 4 (1992), pp. 145-165
[Tindell and Clark, 1994]
K. Tindell, J. Clark.
Holistic schedulability analysis for distributed hard real-time systems.
Microprocessing and Microprogramming, 40 (1994), pp. 117-134
[Tsang, 1993]
E. Tsang.
Foundations of constraint satisfaction..
Academic Press, (1993),
[Zheng et al., 2007]
W. Zheng, Q. Zhu, M. Di Natale, A. Sangiovanni-Vincentelli.
Definition of task allocation and priority assignment in hard real-time distributed systems.
In: Proceedings of the 28th IEEE Real-Time Systems Symposium, pp. 161-170
[Zhu et al., 2009]
Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, A. Sangiovanni-Vincentelli.
Optimizing extensibility in hard real-time distributed systems.
In: Proceedings of the 15th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 275-284
Copyright © 2012. EA
Descargar PDF
Opciones de artículo