covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Detección Eficiente de Elipses en Imágenes. Aplicación al Posicionamiento 3D ...
Información de la revista
Vol. 9. Núm. 4.
Páginas 419-428 (octubre - diciembre 2012)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
6112
Vol. 9. Núm. 4.
Páginas 419-428 (octubre - diciembre 2012)
Open Access
Detección Eficiente de Elipses en Imágenes. Aplicación al Posicionamiento 3D de un Robot Industrial
Efficient ellipse detection. Application to the 3D pose estimation of an industrial robot
Visitas
6112
Eusebio de la Fuente Lópeza,
Autor para correspondencia
efuente@eii.uva.es

Autor para correspondencia.
, Félix Miguel Trespaderneb
a Instituto de Tecnologías Avanzadas de la Producción, P° del Cauce 59, 47011 Valladolid, España
b Departamento de Ingeniería de Sistemas y Automática, Universidad de Valladolid, P° del Cauce 59, 47011 Valladolid, España
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este artículo se presenta un algoritmo para la detección de elipses en imágenes, cuyo objetivo es el cálculo d e la posición 3D de una característica circular en una aplicación robótica. El algoritmo emplea un procedimiento estocástico RANSAC cuya eficiencia ha sido mejorada. El muestreo aleatorio ha sido sustituido por un muestreo guiado sobre las cadenas de contorno de la imagen, que son ordenadas de acuerdo a un criterio de probabilidad de formar parte de la elipse buscada. Esta estrategia disminuye notablemente la cantidad de muestras necesarias, permitiendo que el algoritmo sea adecuado para tiempo real.

Palabras clave:
Reconocimiento de Patrones
Estimación Robusta
Visión para Robots
Robots Industriales
Abstract

In this paper, we present a ellipse detection algorithm developed to measure the 3-D position of a circular feature in a robotic application. The algorithm uses a RANSAC stochastic procedure whose efficiency has been significantly improved, substituting the random sampling with a guided sampling on the curve segments in the image. The contours of the image are first split analyzing their curvature. Then the curve segments are sorted according to their likelihood to be part of the ellipse. We have used the length as a prior indicator of this likelihood. The RANSAC algorithm starts considering only the longer curve segments whilst shorter curve segments are progressively incorporated. This strategy notably diminishes the amount of samples needed and makes the algorithm suitable for real time.

Keywords:
Visual Pattern Recognition
Robust Estimation
Robot Vision
Industrial Robots
Referencias
[Ballard, 1981]
D.H. Ballard.
Generalizing the Hough transform to detect arbitrary shapes.
Pattern Recognition., 13 (1981), pp. 111-122
[Bouguet, 2010]
Bouguet, J.Y., 2010. Camera calibration toolbox for matlab. Disponible en: http://www.vision.caltech.edu/bouguetj/calib_doc/.
[Chaumette and Hutchinson, 2006]
F. Chaumette, S. Hutchinson.
Visual servo control, part I: Basic approaches.
IEEE Robotics and Automation Magazine, 13 (2006), pp. 82-90
[Cheng and Liu, 2004]
Z. Cheng, Y. Liu.
Efficient technique for ellipse detection using restricted randomized Hough transform. In: Proceedings of International.
Conference on Information Technology, 2 (2004), pp. 714-718
[Chum and Matas, 2005]
Chum, O., Matas,J., 2005. Matching with PROSAC - progressive sampling concensus. In Proc. of the CVPR 2005.
[DeSouza and Kak, 2002]
G.N. DeSouza, A.C. Kak.
Vision for mobile robot navigation: A survey.
IEEE Pattern Analysis and Machine Intelligence, 24 (2002), pp. 237-267
[Fischler and Bolles, 1981]
M.A. Fischler, R.C. Bolles.
Random sample consensus: A paradigm for model fiting with applications to image analysis and automated. cartography.
Comm. ACM, 24, 6 (1981), pp. 381-395
[Fitzgibbon et al., 1999]
A. Fitzgibbon, M. Pilu, R.B. Fisher.
Direct least square fitting of ellipses.
IEEE Pattern Analysis and Machine Intelligence, 21 (1999), pp. 476-480
[Fuente and de la, 2011]
Fuente, E. de la, 2011. Robot guiado por visión. Video disponible en http://www.youtube.com/watch?v=RGyxOSdhNm8.
[Gracia and Pérez, 2010]
Gracia L., Pérez C., 2010. Revisión de esquemas de control visual y propuesta de mejora. Revista Iberoamericana de Automática e Informática Industrial, 7, 2, 57-67.
[Halir and Flusser, 1998]
R. Halir, J. Flusser.
Numerically stable direct least squares fitting of ellipses.
6th Int. Conf. in Central Europe on Computer Graphics and Visualization, (1998), pp. 125-132
[Hahn et al., 2008]
K. Hahn, S. Jung, Y. Han, H. Hahn.
A new algorithm for ellipse detection by curve segments.
Pattern Recognition Letters, 29 (2008), pp. 1836-1841
[Hartley and Zisserman, 2004]
Hartley R., Zisserman R., 2004. Multiple View Geometry in Computer Vision. Cambridge University Press.
[Hermann and Klette, 2006]
Hermann, S., Klette, R., 2006. A comparative study on 2d curvature estimators. Research report CITR-TR-183, CITR, The University of Auckland, New Zealand.
[Hough, 1962]
Hough, P.V.C., 1962. Method and means for recognizing complex patterns. U.S. Patent 3069654.
[Illingworth and Kittler, 1998]
J. Illingworth, J. Kittler.
A survey of the Hough transform.
Computer Vision, Graphics and Image Processing, 44 (1998), pp. 87-116
[Kanatani and Liu, 1993]
K. Kanatani, W. Liu.
3D interpretation of conics and orthogonality.
CVGIP: Image Understanding, 58 (1993), pp. 286-301
[Kanatani and Ohta, 2004]
K. Kanatani, N. Ohta.
Automatic detection of circular objects by ellipse growing.
International Journal of Image and Graphics, 4 (2004), pp. 35-50
[Liu and Qiao, 2009]
Z. Liu, H. Qiao.
Multiple ellipses detection in noisy environments: A hierarchical approach.
Pattern Recognition, 42 (2009), pp. 2421-2433
[Mai et al., 2008]
F. Mai, Y.S. Hung, H. Zhong, W.F. Sze.
A hierarchical approach for fast and robust ellipse extraction.
Pattern Recognition, 41 (2008), pp. 2512-2524
[Marji, 2003]
Marji, M., 2003. On the detection of dominant points on digital planar curves PhD thesis, Wayne State University, Detroit, Michigan.
[McLaughlin, 1998]
R.A. McLaughlin.
Randomized Hough transform: improved ellipse detection with comparison.
Pattern Recognition Letters, 19 (1998), pp. 299-305
[McLaughlin and Alder, 1998]
R.A. McLaughlin, M.D. Alder.
The Hough transform versus the UpWrite.
IEEE Pattern Analysis and Machine Intelligence, (1998), pp. 396-400
[Miguel Trespaderne and Fuente, 2009]
Miguel Trespaderne, F., Fuente, E. de la, 2009. Visually guided robot for radiator sealing. IEEE International Conference on Emergent Technologies and Factory Automation.
[Myatt et al., 2002]
Myatt, D.R., Torr, P.H.S., Nasuto, S.J., Bishop, J.M., Craddock. R., (2002). Napsac: High noise, high dimensional robust estimation - it's in the bag. BMVC02, 2, 458-467.
[Mundy and Zisserman, 1992]
Mundy, J.L., Zisserman, A., (1992). Eds., Geometric Invariance in Computer Vision. MIT Press, Cambridge, Massachusetts, USA.
[OpenCV, 2011]
OpenCV, (2011). Open Source Computer Vision Library. Disponible en: http://sourceforge.net/projects/opencvlibrary/.
[Rosenhahn et al., 2004]
Rosenhahn B., Perwass C., Sommer G., 2004. CVonline: Foundations about. 2D-3D pose estimation. Disponible en: http://homepages.inf.ed.ac.uk/rbf/CVonline/.
[Rosin and West, 1995]
P.L. Rosin, G.A.W. West.
Nonparametric segmentation of curves intovarious representations.
IEEE Pattern Analysis and Machine Intelligence, 17 (1995), pp. 1140-1153
[Rousseeuw and Leroy, 1987]
Rousseeuw, P.J., Leroy, A.M., 1987. Robust Regression and Outlier Detection. Wiley.
[Soria et al., 2008]
C. Soria, F. Roberti, R. Carelli, J.M. Sebastián.
Control Servo-Visual de un Robot Manipulador Planar Basado en Pasividad.
Revista Iberoamericana de Automática e Informática Industrial, 5 (2008), pp. 54-61
[Thanh et al., 2009]
Thanh N. M., Ahuja S., Wu Q. M. J., 2009. A real-time ellipse detection based on edge grouping. IEEE International Conference on Systems, Man, and Cybernetics, 3280-3286.
[Tordoff and Murray, 2002]
Tordoff, B., Murray, D.W., 2002. Guided sampling and consensus for motion estimation. In Proc 7th European Conf on Computer Vision, Copenhagen, 82-98.
[Xu et al., 1990]
L. Xu, E. Oja, P. Kultanena.
A new curve detection method: randomized Hough transform (RHT).
Pattern Recognition Letters, 11 (1990), pp. 331-338
[Zhang, 1997]
Zhang Z., 1997. Parameter estimation techniques: a tutorial with application to conic fitting. Image and Vision Computing 15, 59-76.
[Zhang, 1998]
Zhang Z., 1998. A Flexible New Technique for Camera Calibration. Microsoft Research Technical Report MSR-TR-98-71, Microsoft Corporation.
Copyright © 2012. Elsevier España, S.L.. Todos los derechos reservados
Descargar PDF
Opciones de artículo