covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Regulación Saturada con Ganancia Variable Derivativa de Robots Manipuladores
Información de la revista
Vol. 14. Núm. 4.
Páginas 434-445 (octubre - diciembre 2017)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3636
Vol. 14. Núm. 4.
Páginas 434-445 (octubre - diciembre 2017)
Open Access
Regulación Saturada con Ganancia Variable Derivativa de Robots Manipuladores
Saturated regulation with derivative variable gain for robot manipulators
Visitas
3636
Miguel A. Limón-Díaza,
Autor para correspondencia
miangellim@hotmail.com

Autor para correspondencia.
, Fernando Reyes-Cortésb, Emilio J. González-Galvána
a Centro de Investigación y Estudios de Posgrado, Facultad de Ingenieía, Universidad Autónoma de San Luis Potosí, S.L.P. 78290, México
b Grupo de Robótica, Facultad de Ciencias de la Electrónica, Benémerita Universidad Autónoma de Puebla, Puebla 72570, México
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

En este trabajo se presenta una familia grande de reguladores saturados tipo hiperbólicos para robots manipuladores. La propuesta considera a la ganancia proporcional constante y a la ganancia derivativa variable con sintonía automática definida en función del error de posición, velocidad de movimiento y un factor de inyección de amortiguamiento para modificar la velocidad de respuesta del robot. La acción de control derivativa con ganancia variable permite reducir sobreimpulsos, oscilaciones y rizo, tal que alcance el estado estacionario en forma suave. Asimismo, se presenta la propuesta de una función estricta de Lyapunov que permite demostrar la estabilidad asintótica global de la ecuación en lazo cerrado. Para mostrar el desempeño y funcionalidad de la familia propuesta de esquemas de control, un análisis comparativo experimental fue desarrollado entre siete estructuras de control, cinco reguladores pertenecen a la familia propuesta, y dos algoritmos de control bien conocidos como son el proporcional derivativo (PD) y tangente hiperbólico (Tanh). Los resultados experimentales fueron obtenidos con un robot manipulador de transmisión directa de tres grados de libertad.

Palabras clave:
Regulador
Función de saturación
Ganancia Variable
Manipulador robótico
Algoritmos de control
Abstract

In this paper a family with a large number of hyperbolictype saturated regulators for robot manipulators, was presented. The proposed regulators consider a constant proportional gain while the derivative variable gain is self-tuned according to a function that depends on the position error, speed of motion and a damping factor, in order to modify the velocity of the transient response of the robot. The derivative control with variable gain enables reduced overshots, oscillations and ripple, enabling a smooth arrival to the steady state. The paper also proposes a strict Lyapunov function which enables the demonstration of asymptotic global stability of the closed-loop equation. In order to illustrate the performance and functionality of the proposed family of control schemes, an experimental comparison between seven control schemes was implemented. Five of these control schemes belong to the proposed family while two additional control schemes are well-known strategies such as the proportional-derivative (PD) and hyperbolic tangent (Tanh) control schemes. The experiments were performed by using a three degree-of-freedom, direct-drive robot manipulator.

Keywords:
Regulator
Variable gain
Robotic manipulator
Control algorithm
Referencias
[Armendariz et al., 2012]
J. Armendariz, V. Parra-Vega, R. Garcia-Rodriguez, S. Hirai.
In: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, pp. 1172-1179 http://dx.doi.org/10.1109/CDC. 2012.6426562
[Åström and Wittenmark, 1973]
K.J. Åström, B. Wittenmark.
On self tuning regulators.
Automatica, 9 (1973), pp. 185-199
[Bai and Huang, 2000]
E.-W. Bai, Y.-F. Huang.
Variable gain parameter estimation algorithms for fast tracking and smooth steady state.
Automatica, 36 (2000), pp. 1001-1008
[Canudas de Wit et al., 1995]
C. Canudas de Wit, H. Olsson, K.J. Astrom, P. Lischinsky.
A new model for control of systems with friction.
IEEE Transactions on Automatic Control, 40 (1995 Mar), pp. 419-425
[Chávez et al., 2012]
C. Chávez, F. Reyes, E. González, M. Mendoza, I. Bonilla.
Experimental evaluation of parameter identification schemes on an anthropomorphic direct drive robot.
International Journal of Advanced Robotic Systems, (2012), pp. 9
[Chávez-Olivares et al., 2012]
C.A. Chávez-Olivares, F. Reyes-Cortés, E.J. González-Galván, M.O. Mendoza- Gutiérrez, I. Bonilla-Gutiérrez.
Experimental evaluation of parameter identification schemes on a direct-drive robot.
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 226 (2012), pp. 1419-1431
[Dávila et al., 2010]
A. Dávila, J.A. Moreno, L. Fridman.
In: American Control Conference (ACC), 2010. IEEE, pp. 968-973
[Dehghani and Khodadadi, 2015]
A. Dehghani, H. Khodadadi.
In: Control, Automation and Systems (ICCAS), 2015 15th International Conference on., pp. 186-191 http://dx.doi.org/10.1109/ICCAS. 2015.7364904
[Draou et al., 2010]
A. Draou, A. Miloud, Y. Miloud.
In: Control Automation and Systems (ICCAS) 2010 International Conference on., pp. 2467-2471
[Gonzalez et al., 2012]
T. Gonzalez, J.A. Moreno, L. Fridman.
Variable gain super-twisting sliding mode control..
Automatic Control IEEE Transactions on., 57 (2012), pp. 2100-2105
[Haj-Ali and Ying, 2004]
A. Haj-Ali, H. Ying.
Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains.
Automatica, 40 (2004), pp. 1551-1559
[Hussein and Soffker, 2012]
M.T. Hussein, D. Soffker.
In: Control Automation Robotics & Vision (ICARCV) 2012 12th International Conference on. IEEE, pp. 1783-1788
[Jafarov et al., 2005]
E. Jafarov, M. Parlakci, Y. Istefanopulos.
A new variable structure PID- controller design for robot manipulators.
Control Systems Technology IEEE Transactions on., 13 (2005), pp. 122-130
[Kahn, 1953]
L.R. Kahn.
Analysis of a limiter as a variable-gain device.
Electrical Engineering, 72 (1953), pp. 1106-1109
[Kay and Khalil, 2003]
H.S. Kay, H.K. Khalil.
Universal integral controllers with variable gains. In: American Control Conference 2003. Proceedings of the 2003.
IEEE, 1 (2003), pp. 885-890
[Kelly et al., 1996]
R. Kelly, V. Santibáñez, F. Reyes.
On saturated-proportional derivative feedback with adaptive gravity compensation of robot manipulators.
International Journal of Adaptive Control and Signal Processing, 10 (1996), pp. 465-479
[Kiong et al., 2004]
L.C. Kiong, M. Rajeswari, W.E. Rao Kiong.
A self-learning nonlinear variable gain proportional derivative (pd) controller in robot manipulators.
Pertanika Journal of Science & Technology, 12 (2004), pp. 139-158
[Koditschek, 1984]
D. Koditschek.
Natural motion for robot arms. In: Decision and Control 1984.
The 23rd IEEE Conference on, 23 (1984), pp. 733-735
[Kumar et al., 2006]
P.P. Kumar, I. Kar, L. Behera.
Variable-gain controllers for nonlinear systems using the T–S fuzzy model.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 36 (2006), pp. 1442-1449
[Llama et al., 2001]
Llama, M.A., Kelly, R., Santibáñez, V., 2001. A stable motion control system for manipulators via fuzzy self-tuning. Fuzzy Sets and Systems 124 (2), 133-154. DOI: http://dx.doi.org/10.1016/S0165-0114(00)00061-0.
[Llama et al., 2010]
M.A. Llama, R. Kelly, V. Santibáñez.
An adaptive fuzzy controller for robot manipulators: Theory and experimentation.
International Journal of Factory Automation, Robotics and Soft, (2010),
[Llama et al., 2000]
M.A. Llama, R. Kelly, V. Santibánez.
Stable computed- torque control of robot manipulators via fuzzy self-tuning.
IEEE Systems, Man, and Cybernetics Society, (2000 February), pp. 143-150
[Mamdani and Assilian, 1975]
E.H. Mamdani, S. Assilian.
An experiment in linguistic synthesis with a fuzzy logic controller.
International journal of man-machine studies, 7 (1975), pp. 1-13
[Márton and Lantos, 2009]
L. Márton, B. Lantos.
Control of mechanical systems with stribeck friction and backlash.
Systems & Control Letters, 58 (2009), pp. 141-147
[Mendoza et al., 2014]
M. Mendoza, A. Zavala-Río, V. Santibáñez, F. Reyes.
In: 53rd IEEE Conference on Decision and Control, pp. 6335-6341 http://dx.doi.org/10.1109/CDC. 2014.7040382
[Meza et al., 2009]
Meza, J., Santibáñez, V., Soto, R., Llama, M., 2009. Stable fuzzy self-tuning pid control of robot manipulators. In: Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on. pp. 2624-2629. DOI: 10.1109/ICSMC. 2009.5346112.
[Meza et al., 2012]
J. Meza, V. Santibáñez, R. Soto, M. Llama.
Fuzzy self-tuning pid semiglobal regulator for robot manipulators.
Industrial Electronics, IEEE Transactions on, 59 (2012), pp. 2709-2717
[Monopoli and Subbarao, 1980]
R. Monopoli, V. Subbarao.
A new algorithm for model reference adaptive control with variable adaptation gains.
Automatic Control, IEEE Transactions on, 25 (1980), pp. 1245-1248
[Moreno and Osorio, 2008]
J.A. Moreno, M. Osorio.
A Lyapunov approach to second-order sliding mode controllers and observers. In: Decision and Control, 2008. CDC 2008.
47th IEEE Conference on. IEEE, (2008), pp. 2856-2861
[Palm, 1997]
R. Palm.
Model based fuzzy control: fuzzy gain schedulers and sliding mode fuzzy controllers..
Springer, (1997),
[Salas et al., 2013]
Salas, F., Llama, M., Santibáñez, V., May 2013. A stable self-organizing fuzzy pd control for robot manipulators. International Journal of Innovative Computing, Information and Control 9 (5), 2065-2086. URL: http://www.ijicic.org/ijicic-12-02104.pdf.
[Salas and Llama, 2010]
F.G. Salas, M.A. Llama.
Self-organizing fuzzy pid tracking control for a 2 d.o.f. robotic arm. In: Congreso Anual 2010 de la Asociación de México de Control Automático..
Puerto Vallarta, Jalisco México, (2010),
[Salas et al., 2012a]
F.G. Salas, V. Santibáñez, M.A. Llama.
In: World Automation Congress (WAC), 2012. IEEE, pp. 1-6
[Salas et al., 2012b]
F.G. Salas, V. Santibáñez, M.A. Llama.
In: World Automation Congress (WAC) 2012. IEEE, pp. 1-6
[Santibáñez and Kelly, 1997]
V. Santibáñez, R. Kelly.
Strict lyapunov functions for control of robot manipulators.
Automatica, 33 (1997 April), pp. 675-682
[Santibáñez et al., 2002]
Santibáñez, V., Kelly, R., Llama, M.A., 2002. Asymptotic stable tracking for robot manipulators via sectorial fuzzy control1/2. In: 15th Triennial World Congress. Barcelona, Spain.
[Santibáñez et al., 2004]
V. Santibáñez, R. Kelly, M.A. Llama.
Global asymptotic stability of a tracking sectorial fuzzy controller for robot manipulators.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 34 (2004), pp. 710-718
[Sifuentes-Mijares et al., 2014]
J. Sifuentes-Mijares, V. Santibanez, J.L.M. Medina.
A globally asymptotically stable nonlinear pid regulator with fuzzy self-tuned pd gains, for robot manipulators, pp. 573-578 http://dx.doi.org/10.1109/WAC. 2014.6936049
[Slotine and Li, 1991]
Slotine, J.J. E., Li, W. et al., 1991. Applied nonlinear control. Vol. 199. Prentice hall New Jersey.
[Takegaki and Arimoto, 1981]
M. Takegaki, S. Arimoto.
A new feedback method for dynamic control of manipulators.
ASME J. Dyn. Syst. Meas. Control, 103 (1981 June), pp. 119-125
[Tomei, 1991]
P. Tomei.
Adaptive pd controller for robot manipulators.
IEEE Transactions on Robotics and Automation, (1991), pp. 565-570
[Wang, 1994]
Wang, L., 1994. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Electrical engineering. PTR Prentice Hall. URL: http://books.google.com.mx/books?id=spIeAQAAIAAJ.
[Whitcomb et al., 1993]
L.L. Whitcomb, A.A. Rizzi, D.E. Koditscheck.
Comparative experiments with a new adaptive controller for robot arms.
IEEE Transactions on Robotics and Automation, 9 (1993 February),
[Xiaobo et al., 2008]
G. Xiaobo, S. Aiguo, Z. Yan.
Neural Network Control for Telerehabilitation Robot based on Variable Gain.
BioMedical Engineering and Informatics, International Conference on, 2 (2008), pp. 778-782
[Ying, 1993a]
H. Ying.
A two-input two-output fuzzy controller is the sum of two nonlinear PI controllers with variable gains.
In: Fuzzy Systems, 1993., Second IEEE International Conference on., 1 (1993), pp. 35-37
[Ying, 1993b]
H. Ying.
The simplest fuzzy controllers using different inference methods are different nonlinear proportional-integral controllers with variable gains.
Automatica, 29 (1993), pp. 1579-1589
[Ying, 1998a]
H. Ying.
Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control.
Fuzzy Systems, IEEE Transactions on, 6 (1998), pp. 226-234
[Ying, 1998b]
H. Ying.
The Takagi-Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers.
Automatica, 34 (1998), pp. 157-167
[Ying, 2001]
Ying, H., 2001. Conditions on general Mamdani fuzzy controllers as nonlinear, variable gain state feedback controllers with stability analysis. In: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th. Vol. 3. IEEE, pp. 1265-1270.
Descargar PDF
Opciones de artículo