covid
Buscar en
Revista Mexicana de Biodiversidad
Toda la web
Inicio Revista Mexicana de Biodiversidad Assessment of non-cultured aquatic fungal diversity from different habitats in M...
Información de la revista
Vol. 87. Núm. 1.
Páginas 18-28 (marzo 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
3283
Vol. 87. Núm. 1.
Páginas 18-28 (marzo 2016)
Taxonomy and systematics
Open Access
Assessment of non-cultured aquatic fungal diversity from different habitats in Mexico
Estimación de la diversidad de hongos acuáticos no-cultivables de diferentes hábitats en México
Visitas
3283
Brenda Valderramaa, Guadalupe Paredes-Valdeza, Rocío Rodríguezb, Cynthia Romero-Guidob, Fernando Martínezb, Julio Martínez-Romeroc, Saúl Guerrero-Galvánd, Alberto Mendoza-Herrerae, Jorge Luis Folch-Mallolb,
Autor para correspondencia
jordi@uaem.mx

Corresponding author.
a Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
b Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico
c Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico
d Centro Universitario de la Costa, Universidad de Guadalajara, Avenida Universidad 203, Delegación Ixtapa, 48280 Puerto Vallarta, Jalisco, Mexico
e Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (5)
Mostrar másMostrar menos
Tablas (4)
Table 1. Taxonomic classification of reference sequences used in this work.
Table 2. Non-cultured reference sequences used in this work.
Table 3. Identification of environmental sequences.
Table 4. Shannon diversity values calculated for the sampled site.
Mostrar másMostrar menos
Abstract

With the aim to explore the diversity of aquatic fungi in Mexico we present an investigation using a fragment of the 18S ribosomal DNA as a molecular marker obtained from different water bodies (marine, brackish and fresh water). Ribosomal gene fragments were obtained by DNA amplification, the resulting sequences were compared using multiple alignments against a collection of classified reference fungal sequences and then subjected to phylogenetic clustering allowing the identification and classification of DNA sequences from environmental isolates as fungal down to the family level, provided enough reference sequence were available. From our ensemble of 2,020 sequences identified as fungal, 23.8% were classified at the family level, 48.5% at the order level, 13% at the class/subphylum level and 14.7% of the sequences (all from the same site) could not be unambiguously positioned in any of our reference fungal groups but were closely related to uncultivated marine fungi. The most frequently recovered phylum was Ascomycota (89.1%), followed by Chytridiomycota (8.1%), Basidiomycota (2.8%) and Mucoromycotina (1.3%).

Keywords:
Aquatic habitats
Fungi
Taxonomic classification
Fungal populations
18S ribosomal DNA
Resumen

Con la finalidad de explorar la diversidad de hongos acuáticos en México, se presenta una investigación usando un fragmento del ADN ribosomal 18S como un marcador molecular obtenido de muestras de cuerpos acuáticos con diferentes características (marino, salobre y dulce). Los fragmentos de los genes ribosomales se obtuvieron mediante la amplificación de ADN, las secuencias resultantes se compararon mediante alineamientos múltiples con una selección de secuencias de hongos como referencia y posteriormente se analizaron filogenéticamente, permitiendo la identificación y clasificación de secuencias de ADN provenientes de aislados ambientales hasta la categoría de familia, cuando hubo suficientes secuencias disponibles. De las 2,020 secuencias identificadas como hongos, un 23.8% se clasificaron como familia, un 48.5% como orden, un 13% como clase/subphylum y un 14.7% de las secuencias (todas del mismo lugar) no pudieron ser colocadas inequívocamente en alguno de los grupos de hongos que se tomaron como referencia, pero se encontraron muy cercanamente relacionadas a hongos marinos no cultivables. El phylum más representado fue Ascomycota (89.1%), seguido de Chytridiomycota (8.1%), Basidiomycota (2.8%) y Mucoromycotina (1.3%).

Palabras clave:
Hábitats acuáticos
Hongos
Clasificación taxonómica
Poblaciones fúngicas
ADN ribosomal 18S
Texto completo
Introduction

Current estimates of fungal diversity based on the plant:fungi ratio found in countries where both populations are sufficiently well studied suggest the existence of 1.5 million species (Hawksworth, 1991, 2001; Mueller & Schmit, 2007). The study of fungal diversity is important because fungi are decomposers of organic matter and comprise a major proportion of microbial biomass. Recently, global climate change and the better known role of fungi in biogeochemical cycles have enforced the importance of studying fungal diversity (Chapin et al., 2000; Wardle & Giller, 1996).

Studies of fungal diversity have been limited by the lack of appropriate microbiological methods (Kimura, 2006; Torsvik & Ovreas, 2002). The application of molecular approaches such as extracting, cloning and amplifying DNA from environmental samples currently allows us to explore biodiversity without the need of culturing. In this regard, 18S ribosomal DNA (rDNA) sequences have been extensively used to explore fungal diversity (Hunt, Boddy, Randerson, & Rogers, 2004; Le Calvez, Burgaud, Mahé, Barbier, & Vandenkoornhuyse, 2009; Monchy et al., 2011; Piquet, Bolhuis, Meredith, & Buma, 2011) and many specific primers have been designed for this purpose (Borneman & Hartin, 2000; Moon-van der Staay, De Wachter, & Vaulot, 2001; Vainio & Hantula, 2000). The capacity of these primers to reveal fungal diversity in environmental samples is based on their specificity in preferentially priming fungal sequences and also their ability to represent all fungal phyla at the same time (Anderson, Campbell, & Prosser, 2003; Hunt et al., 2004). Molecular tools, including 18S rDNA sequence analysis, have been used recently to re-define fungal taxonomy based on multi-locus phylogenetic analyses (Hibbett et al., 2007; James et al., 2006). As a consequence, our view of traditional fungal groups has changed drastically.

If terrestrial fungi are still largely under-described, aquatic fungi are even less well known. Most of the cultivated aquatic species belong to the Chytridiomycota and Ascomycota phyla (Mueller & Schmit, 2007; Mueller, Bills, & Foster, 2004; Shearer et al., 2007) and many fungal-related microbes belonging to the straminipiles (oomycetes and hyphochytriomycetes in particular) have been described (Mueller et al., 2004; Van der Auwera et al., 1995). In Mexico, an important effort to explore fungal diversity has been made (Guzmán, 1998). Exploration of aquatic fungal diversity has also been conducted by traditional methods isolating fungi from freshwater and marine environments (González & Chavarría, 2005; González, Hanlin, Herrera, & Ulloa, 2000; González, Hanlin, & Ulloa, 2001; Heredia, Reyes, Arias, Mena-Portales, & Mercado Sierra, 2004). In marine environments, ascomycetes and mitosporic fungi were mainly found, although one basidiomycete was reported (González et al., 2001).

To explore the diversity of aquatic fungi in Mexico and to demonstrate the potential of a classification system based on a single molecular marker, we present an investigation of different water bodies (marine, brackish and fresh water) using a fragment of 18S rDNA sequences and the results of our phylogenetic clustering approach.

Materials and methodsDescription of the sampled locations

Zempoala, Morelos (fresh water, 19°01′20″N, 99°16′20″W). The Zempoala Lagoons comprises 7 pristine water bodies located in a protected park in the state of Morelos at 2670–3686masl. The area is surrounded by a temperate forest of pines, firs and oaks. Samples were obtained from one of the permanent lagoons.

Carboneras, Tamaulipas (brackish water, 24°37′41.88″N, 97°42′59.19″W). Fishery and leisure town located at 58km from San Fernando in the state of Tamaulipas. It belongs to the central section of Laguna Madre.

Mezquital, Tamaulipas (sea water, 25°14′55.70″N, 97°31′05.54″W). Located in the eastern side of the wider part of Laguna Madre, it is connected to the Gulf of Mexico through an artificial navigation channel.

Media Luna, Tamaulipas (brackish water, 25°09′47.64″N, 97°40′16.35″W). Located at the western side of the wider part of Laguna Madre, and due to poor road conditions and to the absence of large settlements, this is one of the less spoiled areas. The distance between the Mezquital and Media Luna sampling places is approximately 12km.

El Rabón, Tamaulipas (hypersaline sea water, 25°26′23.68″N, 97°24′34.79″W). At the northern end of Laguna Madre, this area has suffered serious transformations due to human activity and had become dry. Recently, the wetlands have been restored by pumping in sea water.

Carpintero. Tamaulipas (fresh water, 22°14′01.12″N, 97°51′20.67″W). Belonging to the Pánuco River basin and located in a protected natural park covering 7ha, Carpintero Lagoon is currently used for fish and crocodile breeding grounds. In spite of the urban location of the site in the City of Tampico it is relatively unspoiled.

Vicente Guerrero, Tamaulipas (fresh water, 24°03′43.70″N, 98°44′13.44″W). This water body is a dam built in 1971 in the Soto La Marina River basin. It has a surface of 22.1km2 at 134m above sea level. With an average volume of 500million m3 it is used for aquatic sports and sport fishing.

Bahía de Banderas, Jalisco (sea water, 20°38′58.93″N, 105°24′51.94″W). Located in the border between the states of Nayarit and Jalisco in the Pacific Coast, it is the largest bay in Mexico with a surface of 773km2. The Ameca River mouth divides the bay, which has a high population density based on Puerto Vallarta.

Cruz de Huanacaxtle, Nayarit (sea water, 20°44′12.96″N, 105°23′17.53″W). A coastal site with low anthropogenic impact located in the north end of Bahía de Banderas in the state of Nayarit. The distance between the Bahía de Banderas and Cruz de Huanacaxtle sampled sites is approximately 15km.

Zacapulco, Chiapas (mangrove swamp water, 15°04′07″N, 92°45′20″W). Unspoiled mangrove area located 200km northwest of the border of the state of Chiapas with Guatemala on the Pacific Ocean coastline. At 14masl, the estuarine salinity oscillates with the tides. The perennial vegetation provides coverage for the habitat of many aquatic birds. There is no seasonal daytime change and temperatures vary between 25 and 35°C.

Santa Catarina, Querétaro (fresh water, 20°47′30.6″N, 100°27′01.66″W). An artificial water reservoir located 25km northwest of the city of Querétaro in the state of Querétaro at 2035masl.

Sample collection

We decided to collect samples from water instead from organic matter to recover a wider selection of the fungal population in each site, not only of those directly involved in decay. Samples were collected from 0.5m below the water surface using a clean and surface sterilized container. Typical sample volumes were 20L. The whole sample was passed through 3 layers of sterile cheesecloth and afterwards filtered through 5μm PVDF membranes (Millipore). The biomass layer was scrapped with a spatula from the membranes, washed in 3–5ml of the same water and centrifuged in 3 different Eppendorf tubes for replica analysis. Final biomass volumes were of 0.1–0.3ml. Pellets were frozen at −20°C until extraction.

DNA extraction

The whole pellet was processed and total DNA extracted using the Ultra Clean Soil DNA Kit (MoBio, Carlsbad, USA) in accordance to the manufacturer's instructions. Total DNA was analyzed for integrity by agarose gel electrophoresis.

Ribosomal DNA amplification

Total DNA aliquots were amplified using primers nu-SSU-0817 and nu-SSU-1536 (Borneman & Hartin, 2000), yielding a primary product of approximately 750bp. Reaction mixtures contained 2.5mM MgCl2, 1mM dNTPs mix, 5pM of each primer, 50ng of total DNA as template, 1X reaction buffer and 5U of Taq polymerase (Altaenzymes, Alberta, Canada). Reaction mixtures were subjected to an initial denaturation step of 5min at 95°C followed by 30 amplification cycles (30s at 95°C, 30s at 55°C, 45s at 72°C) and a final extension step of 2min at 72°C. Amplifications were performed in a PCR sprint thermal cycler (Thermo Electron Corporation, USA). The resultant fragments were separated by agarose gel electrophoresis, the amplified fragment was visualized by ethidium bromide staining, excised and purified with the QIAquick gel extraction kit (QIAGEN, Hilden, Germany).

Library construction

Amplified fragments were directly cloned in the pGemT-easy vector (Promega, Madison, USA) and transformed by electroporation into Escherichia coli strain DH5α. Insert-containing clones were detected by the lack of coloration in the presence of X-gal and IPTG and picked in fresh plates. Plasmids from 6 randomly selected clones from each library were extracted by alkaline lysis and sequenced for insert verification. In those cases where the amplification product could not be detected in at least 4 out of the 6 clones or when the sequenced inserts were not of fungal ribosomal genes, the procedure was repeated to obtain a better yield or quality.

DNA sequencing

A group of 384 randomly selected clones from each library was sequenced in sets of 4 96-well plates. Colonies were picked and plasmid DNA extracted by alkaline lysis. The concentration and integrity of isolated DNA were verified by agarose gel electrophoresis and sequenced with the T7 primer in the Sequencing Unit of the Centro de Ciencias Genómicas (UNAM).

Control experiments

Genomic DNA of different organisms was used as control before sample amplification. From prokaryotic sources: E. coli, Rhizobium meliloti and Spirulina maxima. From fungal sources: Aspergillus nidulans, Debaryomyces hansenii, Yarrowia lipolytica, Saccharomyces cerevisiae, Schizophyllum commune and Bjerkandera adusta. For an arthropod source we used DNA from Centruroides limpidus and from plant sources, Arabidopsis thaliana and Phaseolus vulgaris. In all cases the samples were kindly provided by colleagues at the Instituto de Biotecnología (UNAM) and the Centro de Investigación en Biotecnología (UAEM).

Sequence analysis

Sequenced DNA files were provided in FASTA format and the name of each file was manually edited in order to allow clear identification of each sequence in the future. An initial depuration was performed for each set of 384 sequences and very short or ambiguous sequences were removed. The rest of the sequences were submitted to individual identification against GenBank using the BLAST tool (Altschul et al., 1997). While most of the sequences matched entries from fungal origins those that clearly corresponded to other phyla were removed. In samples from marine sources, the cutoff was less clear based on the poor number of well-characterized marine fungi so we decided to leave all ambiguous sequences in the set for further analysis. Approved sets were automatically aligned using the Clustal W algorithm (Larkin et al., 2007) contained in Mega version 4 (Tamura, Dudley, Nei, & Kumar, 2007). Most of the sequence aligned in the first round, although optimization of the surroundings of variable regions required manual alignment. Vector borne fragments were removed after alignment. A set of ribosomal sequences from well-identified organisms (Table 1) was added to each alignment for internal reference and the group was re-aligned and manually optimized with Clustal W. We sometimes detected groups of experimental sequences that did not cluster with reference sequences but within themselves. In these cases we identified each one of the sequences by looking for the closest match in the databases using the BLAST tool. For some sequences, the closest match resulted to be an entry from a characterized species but in other cases we recovered entries from environmental surveys. Phylogenies were reinforced by including sequences from characterized species to the reference sequence list and, sometimes, sequences from uncultured sources (Table 2). Sequence clustering was performed using the Neighbor Joining algorithm (Saitou & Nei, 1987) contained in Mega version 4.

Table 1.

Taxonomic classification of reference sequences used in this work.

Phylum  Class/Subphylum  Order  Family  Species  GI 
AscomycotaSaccharomycetesSaccharomycetalesMitosporic SaccharomycetalesCandida sake strain JCM 8894  4586748 
Candida fluviatilis  4586709 
Candida membranifaciens strain W14-3  124494629 
SaccharomycetaceaeKazachstania sinensis  114050511 
Kluyveromyces hubeiensis  33114591 
Saccharomyces cerevisiae  270308944 
EurotiomycetesOnygenales  Onygenaceae  Castanedomyces australiensis  21732245 
Mycocaliciales  Mycocaliciaceae  Chaenothecopsis savonica  2804615 
Chaetothyriales  Incertae sedis  Coniosporium sp. MA 4597  66990818 
EurotialesTrichocomaceaePenicillium sp. Enrichment culture clone NJ-F4  270311611 
Aspergillus sp. Z3b  151384867 
Aspergillus unguis strain F3000054  120431388 
LeotiomycetesHelotialesBulgariaceae  Bulgaria inquinans islote AFTOL-ID 916  91841147 
Dermateaceae  Pezicula carpinea isolate AFTOL-ID 938  91841226 
DothideomycetesCapnodialesDavidiellaceae  Mycosphaerella tassiana strain TS01  238734423 
Capnodiaceae  Leptoxyphium sp. MUCL 43740  50726934 
PleosporalesPleosporaceaeAlternaria sp. enrichment culture clone NJ-F7  270311614 
Glyphium elatum  17104830 
Phoma sp. CCF3818  213876689 
Incertae sedis  Norrlinia peltigericola  56555555 
SordariomycetesXylariales  Mitosporic Xylariales  Dicyma olivacea  13661088 
HypocrealesMitosporic Hypocreales  Fusarium oxysporum  291482357 
Ophiocordycipitaceae  Hirsutella citriformis  11125693 
Incertae sedis  Putative Paecilomyces sp. 080834  89112992 
DiaporthalesValsaceae  Valsella salicis isolate AFTOL-ID 2132  112785209 
Cryphonectriaceae  Chrysoporthe cubensis isolate AFTOL-ID 2122  112785199 
BasidiomycotaUstilaginomycetes  Ustilaginales  Ustilaginaceae  Pseudozyma sp. JCC207 18S  77167276 
AgaromycetesPolyporales  Polyporaceae  Coriolopsis byrsina  288557592 
Agaricales  Cyphellaceae  Radulomyces hiemalis isolate 5444a  116687716 
Auriculariales  Auriculariaceae  Auriculariaceae clone Amb_18S_699  134022019 
Russulales  Peniophoraceae  Peniophora nuda  2576440 
TremellomycetesTremellales  Tremellaceae  Cryptococcus vishniacii  7262452 
Filobasidiales  Filobasidiaceae  Filobasidium globisporum  21326776 
Cystofilobasidiales  Cystofilobasidiaceae  Cystofilobasidium infirmominiatum isolate AFTOL-ID 1888  109289344 
MicrobotrymycetesLeucosporidiales  Non identified  Leucosporidium scotti isolate AFTOL-ID 718  51859977 
Sporidiobolales  Mitosporic Sporidiobolales  Rhodotorula glutinis AFTOL-ID 720  111283841 
Blastocladiomycota  Blastocladiomycetes  Blastocladiales  Catenariaceae  Catenomyces sp. JEL342 isolate AFTOL-ID 47  49066429 
ChytridiomycotaChytridiomycetesChytridialesChytridiaceaeBlyttiomyces helicus isolate AFTOL-ID 2006  108744678 
Chytriomyces sp. JEL378 isolate AFTOL-ID 1532  108744670 
ChytriomycetaceaeEntophlyctis helioformis isolate AFTOL-ID 40  49066425 
Entophlyctis sp. JEL174 isolate AFTOL-ID 38  49066423 
Cladochytriaceae  Polychitrium aggregatum strain JEL109  47132215 
RhizophlyctidialesRhizophlyctidaceaeRhizoplhyctis rosea isolate AFTOL-ID 43  490664428 
Rhizophydium elyense isolate AFTOL-ID 693  108744666 
Triparticalcar arcticum isolate AFTOL-ID 696  108744667 
Fungi incertae sedisMucoromycotinaMucoralesMucoraceae  Mucor plumbeus strain UPSC 1492  33334392 
Thamnidiaceae  Backusella ctenidia  11078007 
Fungi/metazoan incertae sedisProtozoaEccrinales  Eccrinaceae  Eccrinidus flexilis isolate SPA11C45  50083273 
RozellidaRozelliidaeRozella allomycis isolate AFTOL-ID 297  49066437 
Rozella sp. JEL347 isolate AFTOL-ID 16  47132211 
IchthyosporeaeNon identified  Non identified  Ichthyoponida sp. LKM51  3894141 
Ichtyophonida  Non identified  Anurofeca richardsi  4322029 
Non identifiedChoanoflagellidaAcanthoecidae  Stephanoeca diplocostata  37359232 
Salpingoecidae  Lagenoeca sp. antarctica  120407515 
Alveolata  Dinophyceae  Non identified  Unclassified Dynophyceae  Gymnodinium simplex strain ccmp 419  88659160 
Table 2.

Non-cultured reference sequences used in this work.

Definition  Clone ID  GI number  Closest match by BLAST 
Uncultured fungiClone BAQA254  20377933  Phaeopleospora eugeniicola (Ascomycota) 
Uncultured basidiomycete clone H18E12_8  149786618  Filobasidium globisporum (Basidiomycota) 
Uncultured basidiomycete clone MV2E_89  149786738  Cryptococcus vishniacci (Basidiomycota) 
Uncultured basidiomycete clone MV5E_EF18  149786752  Pseudozyma sp. (Basidiomycota) 
Uncultured basidiomycete clone LC23_5EP_14  95115857  Pseudozyma sp. (Basidiomycota) 
Uncultured ascomycete  27530772  Davidiella tassiana (Ascomycota) 
Uncultured ascomycete clone LC23_4EP_18  95115853  Bulgaria inquinans (Ascomycota) 
Uncultured ascomycete isolate  21902393  Phoma sp. (Ascomycota) 
Uncultured rhizosphere clone  23504803  Mucor plumbeus (Mucoromycotina) 
Uncultured Chytridiomycota clone MV5E2_91  149786790  Rhizophydium elyensis (Chytridiomycota) 
Clone CCW24  29423782  Triparticalcar arcticum (Chytridiomycota) 
Clone CCW48  27802600  Entophlyctis confervae-glomeratae (Chytridiomycota) 
Clone control46  151413777  Rozella sp. JEL347 (Chytridiomycota) 
Clone RBfung138  90904231  Candida sp. Y6 EG-2010 (Ascomycota) 
Clone WIM48  113926798  Basidiobolus haptosporus (Fungi incertae sedis) 
Clone F47 (S2)  86604435  Preussia lignicola (Ascomycota) 
Clone NAMAKO-37  114217391  Basidiobolus haptosporus (Fungi incertae sedis) 
Clone SSRPD64  126033366  Phaeophleospora eugeniicola (Ascomycota) 
Clone Zeuk2  59709949  Phaeophleospora eugeniicola (Ascomycota) 
Uncultured eukaryotesClone 051025_T2S4_W_T_SDP12_094  223030789  Cryothecomonas longipes (Cryomonadida) 
Clone 18BR20  124541005  Paracalanus aculeatus (Copepoda) 
Clone SCM15C21  56182170  Pentapharsodinum tyrrhenicum (Dinoflagellate) 
Clone SCM27C27  50541716  Acartia longiremis (Copepoda) 
Clone SCM28C135  56182295  Diaphanoeca grandis (Choanoflagellidae) 
Clone SCM37C13  50541727  Pantachogon haeckeli (Cnidaria) 
Clone SCM38C38  50541719  Paracalanus parvus (Copepoda) 
Clone SCM38C41  56182194  Ichthyodinium chabelardi (Alveolata) 
Clone SCM38C62  56182178  Dinophyceae sp. CCMP1878 (Dinoflagellate) 
Clone SCM38C9  50541718  Paracalanus parvus (Copepoda) 
Clone SSRPB26  126033229  Gymnodinium aureolum (Alveolata) 
Clone TAGIRI-8  67624905  Gymnodinium beii (Alveolata) 
Clone CYSGM-24  133778655  Amastigomonas mutabilis (Apusozoa) 
Isolate E3  30144455  Duboscquella sp. Hamana/2003 (Alveolata) 
Clone MB04.31  146157556  Oithona similis (Copepoda) 
Clone T37A2  58531834  Allas sp. JJP-2003 (Cercozoa) 
ResultsAmplification of fungal 18S ribosomal DNA from reference isolates

Control genomic DNA from different sources was tested for amplification with primers nu-SSU-0817 and nu-SSU-1536. Templates from non-fungal sources were unable to support amplification while fungal sources specifically amplified the internal fragment of 18S rDNA (data not shown). In 5 out of 6 fungal samples (A. nidulans, D. hansenii, Y. lipolytica, S. cerevisiae, and B. adusta) the size of the amplified product matched the expected 762bp (data not shown). Sequence data quality was assessed by sequencing a control library generated by amplification of 18S rDNA from S. cerevisiae.

Identification and phylogenetic analysis of nu-SSU-0817 and nu-SSU-1536 amplification libraries

Total DNA from water samples from 11 different sites (see Section ‘Materials and methods’) was isolated, a fragment of the 18S rDNA amplified and cloned in genetic libraries for individual clone sequencing. In those rare cases where rDNA sequences from phylogenetic groups other than fungi were recovered, these were removed from the collection before clustering. The only exception to this behavior was the sample from Carpintero lagoon, where the 146 sequences recovered were more similar to reference sequences from dinoflagellates than from fungi. This set of sequences was removed from our analysis.

Clustering analysis of the libraries

We tested the ability of our molecular marker, a fragment of the 18 rDNA gene containing regions V4–V8, to reconstruct a clustering profile consistent with the taxonomic classification using our ensemble of reference sequences (Fig. 1). Once the robustness of the clustering method was demonstrated, the environmental sequences from 10 of our 11 libraries (after removing the samples from Carpintero Lagoon for the reasons described above) were organized by site along with the fungal reference sequences as described in Section ‘Materials and methods’. Serial reconstructions of the 10 libraries were performed using the manually optimized multiple alignment from each site, which included the recovered reference sequences, until a robust and informative phylogram was obtained. Based on these phylograms, we identified the most probable taxonomic classification of the environmental sequences by their clustering with reference sequences.

Figure 1.

Reconstructed phylogram of reference sequences including supporting environmental sequences and other metazoa (Alveolata, Eccrinales, Ichtryosporeae and Choanoflagellida) indicating the taxonomic classification of the organisms. Sequences from Arthropoda and Cnidaria were added to root the phylogram.

(2.3MB).

By the methodology described above, we were able to identify 529 of the environmental sequences at the family level, 1077 at the order level and 288 at the Class/Subphylum level. Only 326 sequences, all from the same site, did not group with any reference sequence but to uncultivated clones from marine sources (Table 3). The most abundant phylum found was Ascomycota (1458 sequences) (Fig. 2), followed by Chytridiomycota (133 sequences) (Fig. 3). Sequences belonging to phylum Basidiomycota (45 sequences) (Fig. 4) and to subphylum Mucoromycotina (21 sequences) were seldom recovered as well as non-fungal sequences belonging to Choanoflagellidae and Eccrinales (29 sequences) (Fig. 5).

Table 3.

Identification of environmental sequences.

          Sampled sites
Phylum  Class/Subphylum  Order  Family  Genus  Zempoala  Carboneras  Mezquital  Cruz Huanacaxtle  Vicente Guerrero  Media Luna  El rabón  Zacapulco  Santa Catarina  Bahía Banderas  Total by genus 
  Saccharomycetes (363)SaccharomycetalesMitosporic Saccharomycetal  Candida  63                  69 
  Non identified  Non identified          213    71      293 
  Non identified  Non identified  Non identified                   
  Non identified (260)  Non identified  Non identified  Non identified              253      260 
  Leotiomycetes (3)  Heliotiales  Dermateaceae  Pezicula                   
Ascomycota (1279)Eurotiomycetes (18)Eurotiales  Trichocomaceae  Aspergillus               
Chaetothyriales  Non identified  Non identified                   
Verrucarriales  Verrucariaceae  Norrlinia                   
Non identified  Non identified  Non identified                   
Sordariomycetes (630)Hypocreales  Non identified  Non identified  10              109    120 
Diaporthales  Cryphonectriaceae  Chysoporthe                 
HypocrealesMitosporic Clavicipitaceae  Paecilomyces  24  12  61  11      234  26      368 
Non identified  Non identified          133            133 
Euascomycetes (1)  Pleosporales  Pleosporaceae  Phoma                   
Dotyideomycetes (1)  Capnodiales  Davidiellaceae  Davidiella                   
Non identified (3)  Non identified  Non identified  Non identified                 
Mucorales (27)  Non identified (27)  Non identified  Non identified  Non identified  19                27 
Chytridiomycota (299)  Non identified  Non identified  Non identified                   
    Non identified  Non identified                  35    35 
  SpizellomycetalesSpizellomyceteaceae  Tripalcalcar                   
  Spizellomycetales incertae sedis  Rozella  13  179  23        225   
Chytridiomycetes (299)ChytridialesEndochytriaceae  Non identified                   
Non identified  Non identified                   
ChytridiaceaeBlyttiomyces  10                    10 
Chytriomyces                 
Cladochytriaceae  Polychytrium                   
Rhizophydiales  Rhizophydiaceae  Rhizophydium               
Basidiomycota (40)Tremellomycetes (9)FilobasidialesNon identified  Non identified                   
Filobasidieaceae  Non identified                 
Cystofilobasidales  Cystofilobasidiaceae  Non identified                   
Agaromycetes (14)  Polyporales  Non identified  Non identified      13              14 
Pucciniomycotina (2)  Microbotrimycetes  Leucosporidiales  Leucosporidium                   
Atractielomycetes (2)  Soporidiobolales  Non identified  Non identified                   
Ustilagomycetes (2)  Non identified  Non identified  Non identified                 
Non identified (5)  Non identified  Non identified  Non identified                 
Marine clones (326)  Non identified (326)  Non identified  Non identified  Non identified                    326  326 
Figure 2.

Ascomycota diversity in the sampled sites identified by Class (sub-phyllum)/order/family.

(0.22MB).
Figure 3.

Chytridiomycota diversity in the sampled sites identified by Class (sub-phyllum)/order/family.

(0.18MB).
Figure 4.

Basidiomycota diversity in the sampled sites identified by Class (sub-phyllum)/order/family.

(0.2MB).
Figure 5.

Non fungal microbial diversity in the sampled sites identified by Class (sub-phyllum)/order/family.

(0.15MB).
Diversity estimation

Molecular Operational Taxonomical Units (MOTUS) diversity was estimated using the Shannon Index, which gives a measure of both species numbers and the evenness of their abundance as presented in Table 4 (Shannon, 1948). The value of the index ranges from low values (reduced species richness and evenness) to high values (extended species evenness and richness). In this work, the lowest diversity value was obtained for Media Luna and Bahía de Banderas, samples with a single MOTU identified in each (H′=0). In contrast, the highest diversity value was obtained for the Zempoala lagoon (H′=2.285), slightly higher than the total diversity by family (H′=2.130).

Table 4.

Shannon diversity values calculated for the sampled site.

Location  Environment  N per site  S per site  H′ per site 
Zempoala  Freshwater temperate lagoon  171  25  2.285 
Carboneras  Brackish coastal lagoon  215  0.743 
Mezquital  Marine coastal lagoon  85  0.769 
Cruz de Huanacaxtle  Pacific Ocean coastline  64  1.749 
Vicente Guerrero  Dam  153  0.583 
Media Luna  Brackish coastal lagoon  213 
El rabón  Hypersaline coastal lagoon  241  0.148 
Zacapulcp  Mangrove swamp  361  0.906 
Santa Catarina  Artificial water reservoir  164  1.003 
Bahía de Banderas  Pacific Ocean coastline  326 
Total by family    1,993  39  2.130 

To determine if the different groups were randomly present in the various sample sites or if there was a predominance of certain groups in a given site, Friedman's test for the 2-way classification was performed. The entire population was distributed using the 10 different sites (blocks) and 18 taxonomic groups classified at the order level (treatments). Application of Friedman's procedure to the data resulted in a X2 value of 35.71 and 17 degrees of freedom.

Discussion

In aquatic environments organic matter decomposition occurs through a complex but well defined fungal succession (Barlocher & Kendrick, 1974; Gessner, Thomas, Jean-Louis, & Chauvet, 1993). The most common approach used for aquatic fungi diversity surveys involves the collection of organic material from natural sources such as plant debris or from artificial baits and the microscope-based estimation of species richness. Using this approach, richness depends on the ability of the species in the community to sporulate. Alternatively, molecular methods may be applied for the identification of fungal species, independently of their metabolic status or life cycle stage. Comparative studies performed on decaying leaves indicate that both approaches are complementary in the elucidation of population composition and dynamics (Nikolcheva, Cockshutt, & Barlocher, 2003).

Unfortunately, little attention has been paid to aquatic fungi, so it is difficult to compare our results with those of other groups. Available studies focus mainly on fungi adhered to organic matter (mainly wood), which limit the study to wood-decomposing fungi or to specific water bodies, mainly lakes or rivers. It is also true that most of these studies use traditional cultivation techniques to explore biodiversity, and this is also a limitation. Many of these studies refer only to certain groups of fungi (yeasts, for example).

Small subunit ribosomal DNA sequences (18S rDNA) have been used as molecular markers for reconstructing fungal taxonomy (Bruns et al., 1992; Hibbett et al., 2007; James et al., 2006) and for the description of fungal diversity in soils and water bodies (Anderson et al., 2003; Hunt et al., 2004; Monchy et al., 2011; Piquet et al., 2011). Small subunit rDNA sequences have been used to explore biological diversity and specialized software has been developed to discriminate among prokaryotic and eukaryotic sequences (Bengtsson et al., 2011). 18S rDNA sequences are still widely used to explore environmental samples. The set of primers used here was designed for the amplification of fungal ribosomal DNA, in particular an internal fragment of the 18S ribosomal particle gene between variable regions V4 and V8 (Borneman & Hartin, 2000). In the original paper these primers were unable to amplify DNA isolated from organisms other than fungi and operational specificity was demonstrated by the targeted amplification of fungal 18S ribosomal sequences from soil samples (Anderson et al., 2003).

Species designation of non-cultured individuals based on molecular markers presents the intrinsic weakness of lacking a statistically sound method. In some cases the identification is based on the overall similarity of query sequences to reference sequences in public databases in paired alignments using arbitrarily designated limits. In order to enforce the taxonomical robustness of our work, we adapted the identity interval rank concept originally devised for the classification of plant-nodulating bacterial species (Lloret et al., 2007; Martínez-Romero, Ormeño-Orrillo, Rogel, López-López, & Martínez-Romero, 2010).

Our approach is based on clustering of experimental sequences and a set of taxonomically classified reference sequences encompassing known fungal phyla and basal lineages. This gives enough information to reconstruct the taxonomic classification of the organisms. Sometimes clustering patterns were sensitive to the distribution of experimental sequences unless more reference sequences were included. In these cases, we identified clusters of experimental entries lacking reference sequences and used them to retrieve their best match in the databases. Inclusion of these new reference sequences in the alignments settled tree topology. Each cluster was taxonomically identified using the classification of the reference sequences located within, at different levels, from phylum to family.

The sequence variability of the 18S rDNA fragments supports the clustering reconstruction of our reference sequences assembled with taxonomic consistency. This includes the identification of a subgroup of Chytridiomycetes belonging to the Rozella genus, which is known to cluster separately (Hibbett et al., 2007). It is important to note that we were able to recover sequences from all fungal phyla, indicating little bias for the collection procedure or the amplification primers used. From the entire collection, 23.8% of the sequences could be identified at the family level, 48.5% at the order level and 13% at the class/subphylum level.

The important role of wood and leaf litter degradation has been ascribed to aquatic ascomycetes since basidiomycetes are scarce in water habitats and other organisms such as bacteria rarely have the ability to completely mineralize lignin (Simonis, Raja, & Shearer, 2008). Thus, it was not surprising that the Ascomycota was the most frequently recovered phylum and Sordariomycetes the most frequently recovered class. The occurrence of non-identified ascomycetes was documented in only 3 of the sampled sites supporting that idea that this phylum is the best characterized even in aquatic habitats. The second most abundant phylum described in aquatic environments is Chytridiomycota and, accordingly, it was the second most frequently found group for our sequence with 41% of the sequences identified at the family level.

The large number of clones analyzed allowed us to assess diversity using the Shannon index obtaining values ranging from 0 to 2.363. With a single exception, these values are below those described for soil fungal populations (1.87–2.82) (Klaubauf et al., 2010), suggesting that aquatic fungi are less diverse than their soil counterparts. The only site with high diversity was Zempoala, a pristine environment located in a temperate zone. The less diverse sites were Media Luna and Bahía de Banderas, both coastal sites with high human impact. The combination of organisms identified was specific for each site as demonstrated by the direct application of the Friedman test for the 2-way classification. This result emphasizes organism specialization and therefore the need for regular evaluation of the local biodiversity in aquatic environments.

Acknowledgments

This work was partially funded by grant Conacyt-Semarnat 2004-01-0100. We are grateful to José Luis Fernández and Dr. Víctor González from CCG-UNAM for DNA sequencing and Prof. Michael A. Pickard for critical reading of the manuscript.

References
[Altschul et al., 1997]
S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, et al.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Research, 25 (1997), pp. 3389-3402
[Anderson et al., 2003]
I.C. Anderson, C.D. Campbell, J.I. Prosser.
Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil.
Environmental Microbiology, 5 (2003), pp. 36-47
[Barlocher and Kendrick, 1974]
F. Barlocher, B. Kendrick.
Dynamics of the fungal population on leaves in a stream.
Journal of Ecology, 62 (1974), pp. 761-791
[Bengtsson et al., 2011]
J. Bengtsson, K.M. Eriksson, M. Hartmann, Z. Wang, B.D. Shenoy, G.A. Grelet, et al.
Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets.
Antonie Van Leeuwenhoek, 100 (2011), pp. 471-475
[Borneman and Hartin, 2000]
J. Borneman, R.J. Hartin.
PCR primers that amplify fungal rRNA genes from environmental samples.
Applied and Environmental Microbiology, 66 (2000), pp. 4356-4360
[Bruns et al., 1992]
T.D. Bruns, R. Vilgalys, S.M. Barns, D. González, D.S. Hibbett, D.J. Lane, et al.
Evolutionary relationships within fungi: analyses of nuclear smal subunit rRNA sequences.
Molecular Phylogenetics and Evolution, 1 (1992), pp. 231-241
[Chapin et al., 2000]
F.S. Chapin, E.S. Zavaleta, V.T. Eviner, R.L. Naylor, P.M. Vitousek, H.L. Reynolds, et al.
Consequences of changing biodiversity.
Nature, 405 (2000), pp. 234-242
[Gessner et al., 1993]
M.O. Gessner, C.M. Thomas, A.M. Jean-Louis, E. Chauvet.
Stable successional patterns of aquatic hyphomycetes on leaves decaying in a summer cool stream.
Mycological Research, 97 (1993), pp. 163-172
[González et al., 2000]
M. González, R. Hanlin, T. Herrera, M. Ulloa.
Fungi colonizing hair-baits from three coastal beaches of Mexico.
Mycoscience, 41 (2000), pp. 259-262
[González et al., 2001]
M. González, R. Hanlin, M. Ulloa.
A checklist of higher marine fungi of Mexico.
Mycotaxon, 80 (2001), pp. 241-253
[González and Chavarría, 2005]
M.C. González, A. Chavarría.
Some freshwater ascomycetes from Mexico.
Mycotaxon, 91 (2005), pp. 315-322
[Guzmán, 1998]
G. Guzmán.
Inventorying the fungi of Mexico.
Biodiversity and Conservation, 7 (1998), pp. 369-384
[Hawksworth, 1991]
D.L. Hawksworth.
The fungal dimension of biodiversity: magnitude, significance, and conservation.
Mycological Research, 95 (1991), pp. 641-655
[Hawksworth, 2001]
D.L. Hawksworth.
The magnitude of fungal diversity: the 1.5 million species estimate revisited.
Mycological Research, 105 (2001), pp. 1422-1432
[Heredia et al., 2004]
G. Heredia, M. Reyes, R.M. Arias, J. Mena-Portales, A. Mercado-Sierra.
Adiciones al conocimiento de la diversidad de los hongos conidiales del bosque mesófilo de montaña del estado de Veracruz.
Acta Botanica Mexicana, 66 (2004), pp. 1-22
[Hibbett et al., 2007]
D.S. Hibbett, M. Binder, J.F. Bischoff, M. Blackwell, P.F. Cannon, O.E. Eriksson, et al.
A higher-level phylogenetic classification of the Fungi.
Mycological Research, 111 (2007), pp. 509-547
[Hunt et al., 2004]
J. Hunt, L. Boddy, P.F. Randerson, H.J. Rogers.
An evaluation of 18S rDNA approaches for the study of fungal diversity in grassland soils.
Microbial Ecology, 47 (2004), pp. 385-395
[James et al., 2006]
T.Y. James, F. Kauff, C.L. Schoch, P.B. Matheny, V. Hofstetter, C.J. Cox, et al.
Reconstructing the early evolution of fungi using a six-gene phylogeny.
Nature, 443 (2006), pp. 818-822
[Kimura, 2006]
N. Kimura.
Metagenomics: access to unculturable microbes in the environment.
Microbes and Environments, 21 (2006), pp. 201-215
[Klaubauf et al., 2010]
S. Klaubauf, E. Inselsbacher, S. Zechmeister-Boltenstern, W. Wanek, R. Gottsberger, J. Strauss, et al.
Molecular diversity of fungal communities in agricultural soils from Lower Austria.
Fungal Diversity, 44 (2010), pp. 65-75
[Larkin et al., 2007]
M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, et al.
Clustal W and Clustal X version 2.0.
Bioinformatics (Oxford, England), 23 (2007), pp. 2947-2948
[Le Calvez et al., 2009]
T. Le Calvez, G. Burgaud, S. Mahé, G. Barbier, P. Vandenkoornhuyse.
Fungal diversity in deep-sea hydrothermal ecosystems.
Applied and Environmental Microbiology, 75 (2009), pp. 6415-6421
[Lloret et al., 2007]
L. Lloret, E. Ormeño-Orrillo, R. Rincón-Rosales, J. Martínez-Romero, M.A. Rogel-Hernández, E. Martínez-Romero.
Ensifer mexicanum sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuitze in Mexico.
Systematic and Applied Microbiology, 30 (2007), pp. 280-290
[Martínez-Romero et al., 2010]
J.C. Martínez-Romero, E. Ormeño-Orrillo, M.A. Rogel, A. López-López, E. Martínez-Romero.
Trends in rhizobial evolution and some taxonomic remarks.
Evolutionary biology – concepts, molecular and morphological evolution, pp. 301-315
[Monchy et al., 2011]
S. Monchy, G. Sanciu, M. Jobard, S. Rasconi, M. Gerphagnon, M. Chabe, et al.
Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing.
Environmental Microbiology, 13 (2011), pp. 1433-1453
[Moon-van der Staay et al., 2001]
S.Y. Moon-van der Staay, R. De Wachter, D. Vaulot.
Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity.
Nature, 409 (2001), pp. 607-610
[Mueller and Schmit, 2007]
G. Mueller, J. Schmit.
Fungal biodiversity: what do we know? What can we predict?.
Biodiversity and Conservation, 16 (2007), pp. 1-5
[Mueller et al., 2004]
G.M. Mueller, G.F. Bills, M.S. Foster.
Elsevier Academic Press, (2004),
[Nikolcheva et al., 2003]
L.G. Nikolcheva, A.M. Cockshutt, F. Barlocher.
Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches.
Applied and Environmental Microbiology, 69 (2003), pp. 2548-2554
[Piquet et al., 2011]
A.M. Piquet, H. Bolhuis, M.P. Meredith, A.G. Buma.
Shifts in coastal Antarctic marine microbial communities during and after melt water-related surface stratification.
FEMS Microbiology Ecology, 76 (2011), pp. 413-427
[Saitou and Nei, 1987]
N. Saitou, M. Nei.
The neighbor-joining method: a new method for reconstructing phylogenetic trees.
Molecular Biology and Evolution, 4 (1987), pp. 406-425
[Shannon, 1948]
C.E. Shannon.
A mathematical theory of communication.
Bell System Technical Journal, 27 (1948), pp. 379-423
[Shearer et al., 2007]
C. Shearer, E. Descals, B. Kohlmeyer, J. Kohlmeyer, L. Marvanova, D. Padgett, et al.
Fungal biodiversity in aquatic habitats.
Biodiversity and Conservation, 16 (2007), pp. 49-67
[Simonis et al., 2008]
J.L. Simonis, H.A. Raja, C.A. Shearer.
Extracellular enzymes and soft rot decay: are ascomycetes important degraders in fresh water?.
Fungal Diversity, 31 (2008), pp. 135-146
[Tamura et al., 2007]
K. Tamura, J. Dudley, M. Nei, S. Kumar.
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Molecular Biology and Evolution, 24 (2007), pp. 1596-1599
[Torsvik and Ovreas, 2002]
V. Torsvik, L. Ovreas.
Microbial diversity and function in soil: from genes to ecosystems.
Current Opinion in Microbiology, 5 (2002), pp. 240-245
[Vainio and Hantula, 2000]
E.J. Vainio, J. Hantula.
Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA.
Mycological Research, 104 (2000), pp. 927-936
[Van der Auwera et al., 1995]
G. Van der Auwera, R. De Baere, Y. Van de Peer, P. De Rijk, I. Van den Broeck, R. De Wachter.
The phylogeny of the Hyphochytriomycota as deduced from ribosomal RNA sequences of Hyphochytrium catenoides.
Molecular Biology and Evolution, 12 (1995), pp. 671-678
[Wardle and Giller, 1996]
D.A. Wardle, K.E. Giller.
The quest for a contemporary ecological dimension to soil biology.
Soil Biology and Biochemistry, 28 (1996), pp. 1549-1554

Peer Review under the responsibility of Universidad Nacional Autónoma de México.

Copyright © 2016. Universidad Nacional Autónoma de México, Instituto de Biología
Descargar PDF
Opciones de artículo