metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis Influencia de los ácidos grasos de la dieta en su distribución entre las lipop...
Información de la revista
Vol. 15. Núm. 3.
Páginas 91-98 (enero 2003)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 15. Núm. 3.
Páginas 91-98 (enero 2003)
Acceso a texto completo
Influencia de los ácidos grasos de la dieta en su distribución entre las lipoproteínas circulantes y en su asequibilidad al feto en la rata preñada
Influence of dietary fatty acids on their distribution among plasma lipoproteins and their availability to the fetus in pregnant rats
Visitas
2941
E. Amusquivar, E. Herrera
Autor para correspondencia
eherrera@ceu.es

Correspondencia: Facultad de Ciencias Experimentales y de la Salud. Universidad San Pablo-CEU. Ctra. Boadilla del Monte, Km 5,300. 28668 Boadilla del Monte. Madrid. España.
Facultad de Ciencias Experimentales y de la Salud. Universidad San Pablo-CEU. Boadilla del Monte. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Fundamento y objetivo

El desarrollo fetal requiere un adecuado aporte de ácidos grasos esenciales y de sus derivados de cadena larga. El objetivo de este estudio ha sido determinar en la rata preñada cómo los ácidos grasos esenciales derivados de la dieta son transportados en el plasma materno y de qué forma influyen las variaciones en la composición de los de la dieta sobre el perfil de ácidos grasos en el plasma fetal.

Métodos

Desde el inicio de la gestación, las ratas fueron alimentadas con dietas semisintéticas e isocalóricas que contenían como único componente graso no vitamínico un 10% de grasa de palma, aceite de girasol, aceite de oliva o aceite de pescado. Los animales se estudiaron al día 20 de gestación y fueron alimentados ad libitum con la correspondiente dieta.

Resultados

Con los cuatro tipos de dietas, los ácidos grasos poliinsaturados se encontraban en plasma preferentemente esterificados y asociados a las distintas lipoproteínas circulantes, y en particular en los triglicéridos de las de densidad 1,006 y en los fosfolípidos de lipoproteínas de alta densidad, en vez de en forma de ácidos grasos libres. Las diferencias entre los grupos en los ácidos grasos del plasma fetal se asemejan a los del plasma materno, incluida una reducción en la proporción de ácido araquidónico en las ratas alimentadas con la dieta de aceite de pescado con relación a los demás grupos. La proporción de cada uno de los ácidos grasos poliinsaturados en plasma materno se correlacionó linealmente con los del feto, mientras que esto no ocurrió con los ácidos grasos saturados o con el ácido oleico.

Conclusión

En la rata gestante, los ácidos grasos poliinsaturados del plasma se transportan preferentemente en los triglicéridos de las lipoproteínas de densidad 1,006, varían en función de los de la dieta, y determinan los que llegan al feto. A su vez, la dieta de aceite de pescado, rica en ácidos grasos de la serie ω-3, reduce la proporción deácido araquidónico, lo cual puede tener consecuencias negativas en el desarrollo posnatal.

Palabras clave:
Ácidos grasos poliinsaturados
Dieta
Gestación
Lipoproteínas
Rata
Background

Fetal development requires the appropriate availability of essential fatty acids and of their long chain derivatives. The aim of present study was to determine in pregnant rats how essential fatty acids from the diet are transported in maternal plasma and the influence of changes in their composition in the diet on their availability to the fetus.

Methods

From the onset of pregnancy, rats were fed with semisynthetic and isocaloric diets containing 10% of either palm fat, sunflower oil, olive oil or fish oil as the only non-vitamin fat. Animals were studied on day 20 of pregnancy or of being fed the corresponding diet.

Results

Plasma polyunsaturated fatty acids were always found in their esterified form and associated to the different lipoproteins, mainly in triglycerides of d 1.006 lipoproteins and in phospholipids of HDL rather than in the free fatty acids form. Intergroup differences in fetal plasma fatty acids were similar to those in their mothers, including a decline in the proportion of arachidonic acid in the fish oil group as compared to any of the other groups. The proportion of each of the polyunsaturated fatty acids in maternal plasma linearly correlated with that in the fetus, whereas this was not the case for either saturated fatty acids or oleic acid.

Conclusion

In pregnant rats, plasma polyunsaturated fatty acids are mainly transported in the form of triglycerides associated to d 1.006 lipoproteins, they depend on those in the diet, and determine their availability to the fetus. Besides, fish oil diet, which is rich in o-3 fatty acids, decreases the proportion of AA in the fetus, and this may have negative consequences in postnatal development.

Key words:
Polyunsaturated fatty acids
Diet
Pregnancy
Lipoproteins
Rat
El Texto completo está disponible en PDF
Bibliografía
[1.]
A. Montelongo, M.A. Lasunción, L.F. Pallardó, E. Herrera.
Longitudinal study of plasma lipoproteins and hormones during pregnancy in normal and diabetic women.
Diabetes, 41 (1992), pp. 1651-1659
[2.]
R.H. Knopp, B. Bonet, M.A. Lasunción, A. Montelongo, E. Herrera.
Lipoprotein metabolism in pregnancy.
pp. 19-51
[3.]
I. Ramírez, M. Llobera, E. Herrera.
Circulating triacylglicerols, lipoproteins, and tissue lipoprotein lipase activities in rat mothers and offspring during the perinatal period: effect of postmaturity.
Metabolism, 32 (1983), pp. 333-341
[4.]
J. Argilés, E. Herrera.
Lipids and lipoproteins in maternal and fetus plasma in the rat.
Biol Neonate, 39 (1981), pp. 37-44
[5.]
J. Argilés, E. Herrera.
Appearance of circulating and tissue 14C-lipids after oral 14C-tripalmitate administration in the late pregnant rat.
Metabolism, 32 (1989), pp. 333-341
[6.]
A. Martín-Hidalgo, C. Holm, P. Belfrage, M.C. Schotz, E. Herrera.
Lipoprotein lipase and hormone-sensitive lipase activity and mRNA in adipose tissue during pregnancy.
Am J Physiol, 266 (1994), pp. E930-E935
[7.]
I. Wasfi, I. Weinstein, M. Heimberg.
Increased formation of triglycerides from oleate in perfused livers from pregnant rats.
Endocrinology, 107 (1980), pp. 584-596
[8.]
J.J. Alvarez, A. Montelongo, A. Iglesias, M.A. Lasunción, E. Herrera.
Longitudinal study on lipoprotein profile, high density lipoprotein subclas, and postheparin lipases during gestation in women.
J Lipid Res, 37 (1996), pp. 299-308
[9.]
A. Iglesias, A. Montelongo, E. Herrera, M.A. Lasunción.
Changes in cholesteryl ester transfer protein activity during normal gestation and postpartum.
Clin Biochem, 27 (1994), pp. 63-68
[10.]
A. Buison, H. Lu, F. Guo, K.L. Jen.
High-fat feeding of different fats during pregnancy and lactation in rats: effects on maternal metabolism, pregnancy outcome, milk and tissue fatty acid profiles.
Nutr Res, 17 (1997), pp. 1541-1554
[11.]
M.T. Clandinin, J.E. Chapell, S. Leong, T. Heim, P.R. Swyer, G.W. Chance.
Intrauterine fatty acid accretion rates in human brain: implications for fatty acids requirements.
Early Hum Dev, 120 (1980), pp. 121-130
[12.]
M. Neuringer, W.E. Connor, C. vanPetten, L. Barstad.
Dietary omega- 3 fatty acid deficiency and visual loss in infants rhesus monkeys.
J Clin Invest, 73 (1984), pp. 272-276
[13.]
B. Li, C. Birdwell, J.W. Whelan.
Antithetic relationship of dietary arachidonic acid and eicosapentaenoic acid on eicosanoid production in vivo.
J Lipid Res, 35 (1994), pp. 1869-1877
[14.]
S.E. Carlson, S.H. Werkman, J.M. Peeples, R.J. Cooke, E.A. Tolley.
Arachidonic acid status correlates with first-year growth in preterm infants.
Proc Natl Acad Sci, 90 (1993), pp. 1073-1077
[15.]
E. Amusquivar, F.J. Ruperez, C. Barbas, E. Herrera.
Low arachidonic acid rather than a-tocopherol is responsible for the delayed postnatal development in offspring of rats fed fish oil instead of olive oil during pregnancy and lactation.
J Nutr, 130 (2000), pp. 2855-2865
[16.]
C. Benassayag, T.M. Mignot, M. Haourigui, C. Civel, J. Hassid, B. Carbonne, et al.
High polyunsaturated fatty acid, thromboxane A2, and alpha-fetoprotein concentrations at the human feto-maternal interface.
J Lipid Res, 38 (1997), pp. 276-286
[17.]
S.M. Innis.
Essential fatty acids in growth and development.
Prog Lipid Res, 30 (1991), pp. 39-103
[18.]
E. Herrera.
Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development.
Placenta, (2002), pp. S9-S19
[19.]
E. Herrera, B. Bonet, M.A. Lasunción.
Maternal-fetal transfer of lipid metabolites.
pp. 447-458
[20.]
J. Folch, M. Lees, G.H. Sloane-Stanley.
A simple method for the isolation and purification of total lipids from animal tissues.
J Biol Chem, 226 (1957), pp. 497-509
[21.]
G. Lepage, C.C. Roy.
Direct transesterification of all classes of lipids in one-step reaction.
J Lipid Res, 27 (1986), pp. 114-120
[22.]
G. Lepage, C.C. Roy.
Improved recovery of fatty acids through direct transesterification without prior extraction of purification.
J Lipid Res, 25 (1984), pp. 1391-1396
[23.]
J.I. Ruiz, B. Ochoa.
Quantification in the subnanomolar range of phospholipids and neutral lipids by monodimensional thin-layer chromatography and image analysis.
J Lipid Res, 38 (1997), pp. 1482-1489
[24.]
W.W. Christie.
Silver ion chromatography using solid-phase extraction columns packed with a bonded-sulfonic acid phase.
J Lipid Res, 30 (1989), pp. 1471-1473
[25.]
V. Quaresima, A. Pizzi, R.A. De Blasi, A. Ferrari, M. Ferrari.
Influence of the treadmill speed/slope on quadriceps oxygenation during dynamic exercise.
Adv Exp Med Biol, 388 (1996), pp. 231-235
[26.]
O. Haglund, R. Luostarinen, R. Wallin, L. Wibell, T. Saldeen.
The effects of fish oil on triglycerides, cholesterol, fibrinogen and malondialdehyde in humans supplemented with vitamin E.
J Nutr, 121 (1991), pp. 165-169
[27.]
H.J. Pownall, D. Brauchi, C. Kilinc, K. Osmundsen, Q. Pao, Payton-Ross, et al.
Correlation of serum triglyceride and its reduction by -3 fatty acids with lipid transfer activity and the neutral lipid compositions of high-density and low-density lipoproteins.
Atherosclerosis, 143 (1999), pp. 285-297
[28.]
W.S. Harris, W.E. Connor, D.R. Illingworth, D.W. Rothrock, D.M. Foster.
Effects of fish oil on VLDL triglyceride kinetics in humans.
J Lipid Res, 31 (1990), pp. 1549-1558
[29.]
D.M. Ney, J.B. Lasekan, J. Kim.
Relative effects of dietary oleic- and linoleic-rich oils on plasma lipoprotein composition in rats.
J Nutr, 119 (1989), pp. 857-863
[30.]
P.T. Price, C.M. Nelson, S.D. Clarke.
Omega-3 polyunsaturated fatty acid regulation of gene expression.
Curr Opin Lipidol, 11 (2000), pp. 3-7
[31.]
A. Zorzano, M. Soley, E. Herrera.
Rapid effects of insulin and glucose on the hepatic incorporation of gluconeogenic substrates into glyceride glycerol and glycogen.
Int J Biochem, 21 (1989), pp. 1071-1075
[32.]
H.W. Cook.
Fatty acid desaturation and chain elongation in eucaryotes.
pp. 141-169
[33.]
E.N. Christiansen, J.S. Lund, T. Rørtveit, A.C. Rustan.
Effect of dietary n-3 and n-6 fatty acids on fatty acid desaturation in rat liver.
Biochim Biophys Acta, 1082 (1991), pp. 57-62
[34.]
A. Raz, N. Kamin-Belsky, F. Przedecki, M.G. Obukowicz.
Dietary fish oil inhibits delta-6 desaturase activity in vivo.
J Am Oil Chem Soc, 75 (1998), pp. 241-245
[35.]
M. Lorenzo, T. Caldes, M. Benito, J.M. Medina.
Lipogenesis in vivo in maternal and foetal tissues during late gestation in the rat.
Biochem J, 198 (1981), pp. 425-428
[36.]
B. Bonet, J.D. Brunzell, A.M. Gown, R.H. Knopp.
Metabolism of Very- Low-Density lipoprotein triglyceride by human placental cells: The role of lipoprotein lipase.
Metabolism, 41 (1992), pp. 565-603
[37.]
S.W. Cummings, W. Hatley, E.R. Simpson, M. Ohashi.
The binding of high and low density lipoproteins to human placental membrane fractions.
J Clin Endocrinol Metab, 54 (1982), pp. 903-908
[38.]
S. Kaminsky, S.W. D’Souza, R.F. Massey, J.L. Smart, C.P. Sibley.
Effects of maternal undernutrition and uterine artery ligation on placental lipase activities in the rat.
Biol Neonate, 60 (1991), pp. 201-206
[39.]
F.M. Campbell, M.J. Gordon, A.K. Dutta-Roy.
Plasma membrane fatty acid-binding protein from human placenta: Identification and characterization.
Biochem Biophys Res Commu, 209 (1995), pp. 1011-1017
[40.]
A.K. Dutta-Roy.
Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta.
Am J Clin Nutr, 71 (2000), pp. 315S-322S
[41.]
F.M. Campbell, M.J. Gordon, A.K. Dutta-Roy.
Placental membrane fatty acid-binding protein preferentially binds arachidonic and docosahexaenoic acids.
Life Sciences, 63 (1998), pp. 235-240
[42.]
E. Herrera.
Lipid metabolism in pregnancy and its consequences in the fetos and newborn.
Endocrine, 19 (2002), pp. 43-55
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.arteri.2020.10.002
No mostrar más