metricas
covid
Buscar en
Clínica e Investigación en Arteriosclerosis
Toda la web
Inicio Clínica e Investigación en Arteriosclerosis LDL modificada con fosfolipasa A2. Relación con la LDL electronegativa
Información de la revista
Vol. 16. Núm. 4.
Páginas 133-140 (enero 2004)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 16. Núm. 4.
Páginas 133-140 (enero 2004)
Acceso a texto completo
LDL modificada con fosfolipasa A2. Relación con la LDL electronegativa
LDL modified with phospholipase A2. Relationship with electronegative LDL
Visitas
2769
S. Benítezaa,
Autor para correspondencia
sbenitez@hsp.santpau.es

Correspondencia: Hospital de la Santa Creu i Sant Pau. Servicio de Bioquímica. Sant Antoni M. Claret, 167. 08025 Barcelona. España.
, M. Camachob, R. Arcelusa, O. Jorbaa, L. Vilab, J.L. Sánchez-Quesadaa, J. Ordóñez-Llanosaa
a Servicio de Bioquímica. Institut de Recerca. Hospital de la Santa Creu i Sant Pau. Barcelona
b Laboratorio de Mediadores de la Inflamación. Institut de Recerca. Hospital de la Santa Creu i Sant Pau. Barcelona. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas
Introducción

La LDL electronegativa (LDL[–]) es una fracción minoritaria de LDL plasmática con características aterogénicas, como menor afinidad por el receptor de LDL e inducción de liberación de quimiocinas en células endoteliales. Por otra parte, la LDL(–) presenta un aumento en el contenido en ácidos grasos no esterificados (NEFA) y lisofosfatidilcolina (LPC), que son productos de la acción de la fosfolipasa A2 (PLA2) sobre la LDL. Por ello, el objetivo de este trabajo fue estudiar la implicación de la PLA2 en la generación de LDL(–).

Métodos

Se modificó in vitro LDL con PLA2 (PLA2-LDL) a diferentes concentraciones (0, 0,5, 1, 5, 10 y 20 μg/l) durante 2 h a 37 °C en presencia de albúmina.

Resultados

Se encontraron similitudes entre LDL(–) y PLA2-LDL en sus propiedades. El tratamiento de la LDL con PLA2 indujo un incremento progresivo en la carga eléctrica negativa, un menor tamaño, una menor susceptibilidad a la oxidación y mayor a la agregación, y un contenido aumentado en NEFA y LPC. En su interacción con el receptor de LDL en fibroblastos, la PLA2-LDL presentó una afinidad disminuida. Por otra parte, también indujo la liberación de MCP-1 e IL-8 en células endoteliales. Todos los efectos de la PLA2-LDL fueron dependientes de la dosis y similares a los de la LDL(–) cuando la PLA2-LDL presentó un contenido en NEFA y LPC semejante al de la LDL(–) (la LDL tratada con 1-5 μg/l de PLA2).

Conclusión

La modificación de la LDL por acción de la PLA2 podría implicar la generación de LDL(–), ya que existen coincidencias tanto fisicoquímicas como biológicas entre la LDL(–) y la PLA2-LDL.

Palabras clave:
LDL modificada
LDL electronegativa
PLA2
Introduction

Electronegative LDL (LDL[–]) is a minor plasma LDL fraction with atherogenic characteristics such as lower LDL receptor affinity and induction of chemokine release in endothelial cells. On the other hand, LDL(–) shows an increase in the content of non-esterified fatty acids (NEFA) and lysophosphatidylcholine (LPC), products of the action of phospholipase A2 (PLA2) on LDL. For this reason, the aim of this work was to study the relationship of PLA2 in LDL(–) generation.

Methods

LDL was modified in vitro with PLA2 (PLA2-LDL) at different concentrations (0, 0.5, 1, 5, 10 y 20 μg/l) for 2 h at 37 °C in the presence of albumin.

Results

Similarities were found between LDL(–) and PLA2-LDL properties. Treatment with PLA2 induced a progressive increase in the negative charge of LDL, decreased size, diminished susceptibility to oxidation and greater to aggregation, and higher content in NEFA and LPC. PLA2-LDL presented decreased affinity in its interaction with the LDL receptor in fibroblasts. Furthermore, it also induced MCP-1 and IL-8 release by endothelial cells. All the PLA2-LDL effects were dose-dependent and similar to those of LDL(–) when PLA2-LDL (LDL treated with 1-5 μg/l of PLA2) presented a NEFA and LPC content similar to that of LDL(–).

Conclusion

LDL modification with PLA2 could be responsible for LDL(–) generation, since physico-chemical and biological coincidences exist between LDL(–) and PLA2-LDL.

Key words:
Modified LDL
Electronegative LDL
PLA2
El Texto completo está disponible en PDF
Bibliografía
[1.]
P. Avogaro, G. Bittolo Bon, G. Cazzolato.
Presence of a modified low density lipoprotein in humans.
Arteriosclerosis, 8 (1988), pp. 79-87
[2.]
H. Shimano, N. Yamada, S. Ishibashi, H. Mokuno, N. Mori, T. Gotoda, et al.
Oxidation-labile subfraction of human plasma low density lipoprotein isolated by ion-exchange chromatography.
J Lipid Res, 32 (1991), pp. 763-773
[3.]
A. Sevanian, J. Hwang, H. Hodis, G. Cazzolato, P. Avogaro, G. Bittolo-Bon.
Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations.
Arterioscler Thromb Vasc Biol, 16 (1996), pp. 784-793
[4.]
B. Chappey, I. Myara, M.O. Benoir, C. Maziere, J.C. Maziere, N. Moatti.
Characteristics of ten charge-differing subfractions isolated from human native low density lipoprotein (LDL). No evidence of peroxidative modifications.
Biochim Biophys Acta, 1259 (1995), pp. 261-270
[5.]
K. Demuth, I. Myara, B. Chappey, B. Vedie, M.A. Pech-Ansellem, M.E. Haberland, et al.
A cytotoxic electronegative LDL subfraction is present in human plasma.
Arterioscler Thromb Vasc Biol, 16 (1996), pp. 773-783
[6.]
J.L. Sánchez-Quesada, S. Benítez, M. Franco, C. Otal, F. Blanco-Vaca, J. Ordóñez-Llanos.
Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects.
J Lipid Res, 43 (2002), pp. 699-705
[7.]
J.L. Sánchez-Quesada, M. Camacho, R. Antón, S. Benítez, L. Vila, J. Ordóñez-Llanos.
Electronegative LDL of FH subjects: chemical characterization and induction of chemokine release from human endothelial cells.
Atherosclerosis, 166 (2003), pp. 261-270
[8.]
S. Benítez, J.L. Sánchez-Quesada, M. Camacho, L. Vila, J. Ordóñez-Llanos.
Caracterización de la subfracción electronegativa de la LDL en individuos con hipercolesterolemia familiar.
Clin Invest Arterioscl, 14 (2002), pp. 57-66
[9.]
C. De Castellarnau, J.L. Sánchez-Quesada, S. Benítez, R. Rosa, L. Caveda, L. Vila, et al.
Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells.
Arterioscler Thromb Vasc Biol, 20 (2000), pp. 2281-2287
[10.]
A. Sevanian, G. Bittolo-Bon, G. Cazzolato, H. Hodis, J. Hwang, A. Zamburlini, et al.
Electronegative LDL is a lipid hydroperoxide-enriched circulating lipoprotein.
J Lipid Res, 38 (1997), pp. 419-428
[11.]
E.A. Dennis.
Diversity of group types, regulation and function of phospholipase A2.
J Biol Chem, 269 (1994), pp. 13057-13060
[12.]
T.J. Nevalainen.
Serum phospholipase A2 in inflamatory diseases.
Clin Chem, 39 (1993), pp. 2453-2459
[13.]
K. Kugiyama, Y. Ota, K. Takazoe, Y. Moriyama, H. Kawano, Y. Miyao, et al.
Circulating levels of secretory type II phospholipase A2 predict coronary events in patients with coronary artery disease.
Circulation, 100 (1999), pp. 1280-1284
[14.]
P. Porela, K. Pulkki, L.M. Voipoi-Pulkki, K. Petterson, V. Leppanen, T.J. Nevalainen.
Level of circulating phospholipase A2 as an independent predictor of coronary artery disease.
N Engl J Med, 343 (2000), pp. 1148-1154
[15.]
J.L. Sánchez-Quesada, A. Pérez, A. Caixàs, J. Ordóñez-Llanos, G. Carreras, A. Payés, et al.
Electronegative low density lipoprotein subform is increased in patients with short-duration IDDM and is closely related to glycaemic control.
Diabetologia, 39 (1996), pp. 1469-1476
[16.]
O. Ziouzenkova, A. Sevanian.
Oxidative modification of low-density lipoprotein (LDL) in HD patients: role in electronegative formation.
Blood Purif, 18 (2000), pp. 169-176
[17.]
R.J. Havel, H.A. Eder, J.H. Bragdon.
The distribution and chemical composition of ultracentrifugally-separated lipoproteins in human serum.
J Clin Invest, 34 (1955), pp. 1345-1353
[18.]
J.K. Hakala, K. Öörni, M. Ala-Korpela, P.T. Kovanen.
Lipolytic modification of LDL by phospholipase A2 induces particle aggregation in the absence and fusion in the presence of heparin.
Arterioscler Thromb Vasc Biol, 19 (1999), pp. 1276-1283
[19.]
G.M. Patton, S.J. Robins.
Separation and quantitation of phospholipid classes by HPLC.
[20.]
E.G. Bligh, W.J. Dyer.
A rapid method of total lipid extraction and purification.
Can J Biochem Physiol, 37 (1959), pp. 911-914
[21.]
J. Khoo, E. Miller, P. McLaughlin, D. Steinberg.
Enhanced macrophage uptake of low density lipoprotein after self-aggregation.
Arteriosclerosis, 8 (1988), pp. 348-358
[22.]
Z.F. Stephan, E.C. Yurachek.
Rapid fluorimetric assay of LDL receptor activity by DiI-labeled LDL.
J Lipid Res, 34 (1993), pp. 325-330
[23.]
M. Camacho, N. Godessart, R. Antón, M. García, L. Vila.
Interleukin-1 enhances the ability of cultured human umbilical vein endothelial cells to oxidize linoleic acid.
J Biol Chem, 270 (1995), pp. 17279-17286
[24.]
Y. Kleinman, E.S. Krul, M. Burnes, W. Aronson, B. Pfleger, G. Schonfeld.
Lipolysis of LDL with phospholipase A2 alters the expression of selected apoB-100 epitopes and the interaction of LDL with cells.
J Lipid Res, 29 (1988), pp. 729-743
[25.]
R. Ross.
Atherosclerosis – an inflammatory disease.
N Engl J Med, 340 (1999), pp. 115-126
[26.]
J.L. Witztum, S. Horkko.
The role of oxidized LDL in atherogenesis: immunological response and anti-phospholipid antibodies.
Ann N Y Acad Sci, 811 (1997), pp. 88-96
[27.]
K. Nishi, H. Itabe, M. Uno, K.T. Kitazato, H. Horiguchi, K. Shinno, et al.
Oxidized LDL in carotid plaques and plasma associates with plaque instability.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 1649-1654
[28.]
T. Hevonoja, M.O. Pentikainen, M.T. Hyvönen, P.T. Kovanen, M. Ala-Korpela.
Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL.
Biochim Biophys Acta, 1488 (2000), pp. 189-210
[29.]
C.H. Macphee, K.E. Moores, H.F. Boyd, D. Dhanak, R.J. Ife, C.A. Leach, et al.
Lipoprotein-associated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor.
Biochem J, 338 (1999), pp. 479-487
[30.]
S. Benítez, J.L. Sánchez-Quesada, V. Ribas, O. Jorba, F. Blanco-Vaca, F. González-Sastre, et al.
Platelet-activating factor acetylhidrolase (PAF-AH) is mainly associated with electronegative LDL subfraction.
[31.]
C.H. Macphee, K. Milliner, K.E. Moores, et al.
The involvement of LDL-associated phospholipase A2 in atherogenesis.
Pharmacol Rev, 8 (1996), pp. 309-315
[32.]
E. Hurt-Camejo, G. Camejo, H. Peilot, K. Öörni, P. Kovanen.
Phospholipase A2 in vascular disease.
Circ Res, 89 (2001), pp. 298-304
[33.]
L. Dai, Z. Zhang, P.G. Winyard, K.G. Gaffney, H. Jones, D.R. Blake, et al.
A modified form of low-density lipoprotein with increased electronegative charge is present in rheumatoid artritis synovial fluid.
Free Rad Biol Med, 22 (1997), pp. 705-710
[34.]
O. Wiklund, H. Mattsson, E. Hurt-Camejo, J. Oscarsson.
Effects of simvastatin and atorvastatin on inflammation markers in plasma.
J Intern Med, 251 (2002), pp. 338-347
[35.]
J.L. Sánchez-Quesada, C. Otal-Entraigas, M. Franco, O. Jorba, F. González-Sastre, F. Blanco-Vaca, et al.
Effect of simvastatin treatment on the electronegative low-density lipoprotein present in patients with familial hypercholesterolemia.
Am J Cardiol, 84 (1999), pp. 655-659
[36.]
T. Parasassi, G. Bittolo-Bon, R. Branelli, G. Cazzolato, E.K. Krasnowska, G. Mei, et al.
Loss of apoB-100 secondary structure and conformation in hydroxide rich, electronegative LDL(–.
Free Radic Biol Med, 31 (2001), pp. 82-89
[37.]
P. Harduin, A. Tailleux, J.C. Fruchart, C. Fievet.
Modulation of the expression of human LDL-apoB100 epitopes by lipids and apolipoproteins.
Arterioscler Thromb, 13 (1993), pp. 529-535
[38.]
S. Bañuelos, J.L. Arrondo, F.M. Goni, G. Pifat.
Surface-core relationships in human low density lipoprotein as studied by infrared spectroscopy.
J Biol Chem, 270 (1995), pp. 9192-9196
[39.]
S. Benítez.
LDL electronegativa: caracterización fisicoquímica y biológica en individuos normolipémicos e hipercolesterolémicos.
Tesis doctoral,
[40.]
M. Romano, E. Romano, S. Björkerud, E. Hurt-Camejo.
Ultraestructural localization of secretory type II phospholipase A2 in atherosclerotic and nonatherosclerotic regions of human arteries.
Arterioscler Thromb Vasc Biol, 18 (1998), pp. 519-525
[41.]
E. Hurt-Camejo, G. Camejo, P. Sartipy.
Phospholipase A2 and small, dense low-density lipoprotein.
Curr Opin Lipidol, 11 (2000), pp. 465-471
Copyright © 2003. Sociedad Española de Arteriosclerosis y Elsevier España, S.L.
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.arteri.2021.11.003
No mostrar más