metricas
covid
Buscar en
Gastroenterología y Hepatología (English Edition)
Toda la web
Inicio Gastroenterología y Hepatología (English Edition) Prevalence of Helicobacter pylori resistance after failure of first-line therapy...
Información de la revista
Vol. 41. Núm. 10.
Páginas 654-662 (diciembre 2018)
Visitas
2140
Vol. 41. Núm. 10.
Páginas 654-662 (diciembre 2018)
Review
Acceso a texto completo
Prevalence of Helicobacter pylori resistance after failure of first-line therapy. A systematic review
Prevalencia de las resistencias de Helicobacter pylori tras el fracaso de una primera línea de tratamiento. Revisión sistemática
Visitas
2140
Neus Muñoza,b,
Autor para correspondencia
neus85@gmail.com

Corresponding author.
, Jordi Sánchez-Delgadob,c, Mireia Baylinaa,b, Sheila López-Góngoraa,b, Xavier Calvetb,c
a Departamento de Medicina Interna, Corporació Sanitària Universitària Parc Taulí, Sabadell, Barcelona, Spain
b Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
c Departamento de Gastroenterología y Hepatología, Corporació Sanitària Universitària Parc Taulí, Sabadell, Barcelona, Spain
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (2)
Tablas (2)
Table 1. Review articles. Methods for determining resistance.
Table 2. Articles included in the review. First-line treatments received and prevalence of secondary resistance.
Mostrar másMostrar menos
Material adicional (1)
Abstract

There are no systematic data on the rates of antibiotic resistance after the failure of a first eradication treatment. The objective of this study was to determine the prevalence of secondary resistance to antibiotics by conducting a systematic review of studies evaluating the secondary resistance of Helicobacter pylori. We identified 31 studies (2787 patients). Resistance was determined in 1764 patients. A percentage of 99.1 of patients received clarithromycin as first-line treatment and 58.7% developed resistance. A percentage of 24.3 received metronidazole and 89.7% developed resistance. Secondary resistance to amoxicillin was extremely rare. Secondary resistance after first-line treatment was very common. These findings support the recommendation not to repeat clarithromycin or metronidazole after the failure of a first eradication treatment.

Keywords:
Helicobacter pylori
Second-line
Resistances
Resumen

No hay datos sistemáticos sobre cuáles son las tasas de resistencia a antibióticos tras el fracaso de un primer tratamiento erradicador. El objetivo del estudio es determinar la prevalencia de las resistencias secundarias a los antibióticos mediante una revisión sistemática de estudios que evaluaban las resistencias secundarias de Helicobacter pylori. Se identificaron 31 estudios (2.787 pacientes). Se determinaron resistencias en 1.764 pacientes. El 99,1% de los pacientes recibieron claritromicina como tratamiento de primera línea, y un 58,7% desarrollaron resistencias. El 24,3% de los pacientes recibieron metronidazol, desarrollando resistencias el 89,7%. La resistencia secundaria a amoxicilina fue excepcional. Las resistencias secundarias tras un primer tratamiento son muy elevadas. Estos hallazgos dan soporte a la recomendación de no repetir claritromicina o metronidazol tras el fracaso de un primer tratamiento erradicador.

Palabras clave:
Helicobacter pylori
Segunda línea
Resistencias
Texto completo
Introduction

Helicobacter pylori is one of the most common infections in humans. It is estimated that approximately 50% of the world's population is chronically infected by H. pylori. The infection is associated with a significant number of gastrointestinal diseases, such as peptic ulcer, chronic gastritis, functional dyspepsia, lymphoma of the lymphoid tissue associated with the gastric mucosa and gastric cancer.1,2 Since the discovery of H. pylori infection in 1982,3 multiple treatment options have been described. Until relatively recently, the standard treatment was triple therapy, which included two antibiotics (clarithromycin and amoxicillin or metronidazole) and a proton-pump inhibitor.4 However, the efficacy of this treatment has decreased, primarily because of resistance to clarithromycin and metronidazole; the rate of resistance to clarithromycin has increased to over 20% in many countries.5 In response to the poor results with triple therapy, the current guidelines have changed their recommendations to longer and more complex quadruple therapies.6–9 Although the new treatments achieve better cure rates than the triple therapy, the first-line treatment for H. pylori continues to fail in approximately 10–20% of patients.4

The majority of the consensus documents state that H. pylori resistance to antibiotics is very high after the failure of a first eradication therapy.4,9 However, that conclusion is based on a very small number of studies which analyse primary and secondary resistance together.8,10–12 To our knowledge, there are no systematic reviews which have analysed the secondary resistance rate after the failure of a first-line eradication therapy (proton-pump inhibitor, amoxicillin and clarithromycin). Having accurate figures for these resistance rates could be extremely useful for designing second- and third-line treatments.

In a recent systematic review, our group assessed the effectiveness of the second-line therapies for the eradication of H. pylori.13 The study showed that few treatments achieve cure rates of over 90%. It also showed that no individual treatment consistently obtained excellent results. A number of the studies included in our systematic review reported the resistance to antibiotics after failure of the initial treatment and made it possible to estimate secondary resistance rates for the most commonly used antibiotics.

The objective of this study is therefore to carry out a systematic evaluation to determine the prevalence of resistance to antibiotics after failure of the first-line treatment for H. pylori infection.

Material and methods

The study was conducted in accordance with the PRISMA14 and MOOSE15 guidelines for systematic reviews and meta-analyses. The MOOSE checklist is shown in Appendix 1 and the PRISMA flow chart in Fig. 1.

Figure 1.

Flow of information through the different study selection phases.

(0.28MB).
Search strategy

We carried out a systematic search of the literature limited to full-text articles published in PubMed and the Web of Science (formerly ISI Web of Knowledge) from 1996 to June 2015. The references in the selected articles, the systematic reviews and the personal databases of the authors were also reviewed. The search strategies were ((second line OR rescue OR failure) AND pylori)) in PubMed, and Title=(pylori) and Title=(second line or rescue) in the Web of Science.

Inclusion criteria

We included published full-text articles which met the following criteria: (a) randomised or quasi-randomised clinical trials or observational studies; (b) which evaluated the rescue treatment after failure of a first treatment for H. pylori; and (c) studies that determined resistance levels. Only articles published in Spanish, Italian, French and English were included.

Exclusion criteria

The exclusion criteria were articles in Asian languages, duplicate publications, letters to the editor, expert opinions and reviews.

Data extraction process

The data were extracted independently by two of the authors (NM and XC). The decision to include or exclude studies was made by the two authors separately. Disagreements were resolved by consensus. The level of agreement between the two authors who selected the relevant articles was above 90%. Data extraction was standardised using a data extraction table and was performed separately for each study by the two authors. In the event of disagreement, the data were reviewed and, if necessary, a consensus was arrived at. The variables compiled for this study were: year of publication; country where the study was conducted; number of patients; number of cultures and method for determining resistance and resistance rates according to the previous treatment administered; and antibiotic resistance after first-line failure.

Risk of bias

Two reviewers (NM and JSD) independently assessed the risk of bias according to the current recommendations of the Cochrane Collaboration for randomised clinical trials and the suggestions in the Methods Guide for Effectiveness and Comparative Effectiveness Reviews for observational studies.16 Any discrepancies in the interpretation were resolved with a third reviewer (XC).

Results

Over 2000 articles were obtained with the original search. After reviewing the abstracts, 172 full-text articles were assessed to determine their eligibility. Duplicated studies were excluded. After careful assessment, 31 articles17–47 (2787 patients) were selected which made sensitivity determinations and analysed resistance rates.

Studies excluded

One hundred and forty-one studies were finally excluded, for the following reasons: (1) studies that included paediatric patients; (2) articles that only reported results for patients in first-, third- or fourth-line treatment; (3) articles in Asian languages; (4) letters to the editor or editorials or reviews of H. pylori treatment; (5) articles in which the data provided did not allow the evaluation of study eligibility or data extraction; and (6) articles on second-line treatments without data on resistance or without data on first-line treatment (Appendix 2).

Studies included

Thirty-one articles describing the rate of resistance after the failure of a first eradication therapy (2787 patients) were included in the systematic review.

Study quality

Fig. 2 shows the risk of bias assessment. Of the 31 articles, 18 were randomised clinical trials, 12 were observational and one was retrospective.

Figure 2.

Risk of bias table. NC: non-controlled studies; RCT: randomised controlled clinical trials.

(0.52MB).
Resistance rates to antibiotics used in first-line

In total, 2787 patients were analysed in our review; of these, resistance was determined before the second treatment in 1764 (63.3%). Additional details on the method for determining resistance and the minimum inhibitory concentration (MIC) are shown in Table 1.

Table 1.

Review articles. Methods for determining resistance.

Year  Author  Method  MIC AMO  MIC CLAR  MIC MET  MIC LEV  MIC TET  MIC RIFAB 
2006  Borody et al.17  E-test  >4  ≥1  >8    ≥1  ≥0.002 
2003  Chi et al.20  E-test  >2  >1  >8    >2   
2012  Chuah et al.23  E-test  >4      >1  >8   
2012  Chuah et al.22  E-test    >1  >8  >1  >4   
2003  Furuta et al.25  Agar  >0.5  >1         
2011  Furuta et al.24  Molecular    >1  ≥16       
2002  Georgopoulos et al.26  Agar    >2  >8    >4   
1999  Gomollon et al.27  E-test  >8  >2  >32       
2011  Hori et al.28  Agar    ≥1  ≥8       
2003  Isomoto et al.29  E-test    >2  >8       
2009  Kuo et al.18  E-test  >0.5    >8  >1  >4   
2012  Kudo et al.39  Agar  ≥0.5  ≥1  ≥8       
2013  Kuo et al.19  E-test  >0.5    >8  >1  >4   
2014  Liang et al.21  E-test    >1  >8    >4   
2011  Liou et al.30  E-test  ≥0.5  ≥1  ≥8  >1     
2005  Matsumoto et al.31  E-test  >8  >1  >8  >1     
2003  Murakami et al.33  E-test  >0.5  >1    >16     
2006  Murakami et al.34  E-test  >0.5  >1    >16     
2006  Murakami et al.35  E-test    >1    >16     
2008  Murakami et al.32  E-test  >0.5  >1    >16     
2007  Nishizawa et al.36  Agar  >0.5  >1    >8     
2004  Shimoyama et al.37  Agar  >0.5  >1    >16     
2007  Shirai et al.38  Agar  ≥0.5  >1    ≥8     
2014  Tai et al.43  E-test  >0.5        >1  >4 
2005  Togawa et al.40  Agar             
2009  Ueki et al.41  Agar  ≥0.5  ≥1    ≥8     
2003  Watanabe et al.42  E-test    ≥1         
2002  Wong et al.44  E-test             
2003  Wong et al.45  E-test  >2  >2    >8     
2006  Wu et al.47  E-test    >1    >8    >4 
2011  Wu et al.46  E-test  >0.5      >8    >4 

AMO: amoxicillin; CLAR: clarithromycin; LEV: levofloxacin; MET: metronidazole; MIC: minimum inhibitory concentration; RIFAB: rifabutin.

We analysed the prevalence of secondary resistance to the different antibiotics:

  • (a)

    Amoxicillin: 1729 patients were analysed. Only 10 (0.36%) developed secondary resistance.

  • (b)

    Clarithromycin: 1747 cultures were obtained for resistance, 1026 (58.72%) of which showed resistance.

  • (c)

    Metronidazole: of 68 patients assessed, 61 (89.7%) had secondary resistance to the drug.

  • (d)

    Lastly, of 35 patients who received the combination clarithromycin and metronidazole as first-line treatment, 18 (40.9%) were resistant to both antibiotics (Table 2).

    Table 2.

    Articles included in the review. First-line treatments received and prevalence of secondary resistance.

    Author  Year  Country  First-line  n  nn R AMO (%)  n R CLAR (%)  n R MET (%)  n R MET and CLAR (%)  n R QUIN (%)  n R TET (%) 
    Borody et al.17  2006  Australia  PPIAC  52  52  11 (21.1)  8 (15.3)  28 (53.8)     
    Chi et al.20  2003  Taiwan  PPIAC  100  74    35 (47.2)  44 (59.4)  13 (17.5)     
    Chuah et al.22  2012  Taiwan  PPIAC  128  32        9 (28.1) 
    Chuah et al.23  2012  Taiwan  PPIAC  101  34    9 (26.4)    11 (32.3) 
    Furuta et al.25  2003  Japan  PPIAC  17  17  12 (70.5)         
    Furuta et al.24  2011  Japan  PPIAC  74  59    49 (83)  12 (20.3)       
    Georgopoulos et al.26  2002  Greece  PPIAC  95  67    18 (26.8)  19 (28.3)  10 (14.9)     
    Gomollon et al.27  1999  Spain  PPIAC  21  19  3 (15.7)  3 (15.7)  3 (15.7)     
    Hori et al.28  2011  Japan  PPIAC  82  12    11 (91.6)       
    Isomoto et al.29  2003  Japan  PPIAC  123  72    45 (62.5)  20 (27.7)       
    Kudo et al.39  2012  Japan  PPIAC  52  47  45 (95.7)  2 (4.2)       
    Kuo et al.18  2009  Taiwan  PPIAC  166  99  6 (6)    56 (56.5)    21 (21) 
    Kuo et al.19  2013  Taiwan  PPIAC  150  46  2 (4.3)  21 (45.6)  27 (58.6)    13 (28.2) 
    Liang et al.21  2014  Taiwan  PPIAC  61  17  6 (35.2)  3 (17.6)    4 (23.5) 
    Liou et al.30  2011  Taiwan  PPIAC  142  52  1 (1.9)  33 (63.4)  8 (15.3)    8 (15.3)   
    Matsumoto et al.31  2005  Japan  PPIAC  60  35  21 (60)  3 (8.5)    5 (14.28)   
    Murakami et al.33  2003  Japan  PPIAC  92  90  56 (62.2)  22 (24.4)       
    Murakami et al.34  2006  Japan  PPIAC  61  57  48 (84.21)  3 (5.2)       
    Murakami et al.35  2006  Japan  PPIAC  88  88      21 (23.8)       
    Murakami et al.32  2008  Japan  PPIAC  169  162  128 (79)  14 (8.6)       
    Nishizawa et al.36  2007  Japan  PPIAC  107  107  96 (89.7)  4 (3.7)       
    Shimoyama et al.37  2004  Japan  PPIAC  70  62  52 (83.8)       
    Shirai et al.38  2007  Japan  PPIAC  132  86  74 (86)  5 (5.8)       
    Tai et al.43  2014  Taiwan  PPIAC  158  44  1 (2.2)        14 (31.8)   
    Togawa et al.40  2005  Japan  PPIAC  23  23    12 (52.1)         
    Ueki et al.41  2009  Japan  PPIAC  104  95  85 (89.4)  5 (5.2)       
    Watanabe et al.42  2003  Taiwan  PPIAC  33  27    12 (44.4)      1 (3.7)   
    Wong et al.44  2002  China  PPICM  26  22    15 (91.6)  5 (22.7)  9 (40.9)     
    Wong et al.44  2002  China  PPIAC  11  10    6 (60)  4 (40)  4 (40)     
    Wong et al.44  2002  China  RANCM    3 (75)  2 (50)  2 (50)     
    Wong et al.44  2002  China  PPIAM       
    Wong et al.45  2003  China  PPIAC  34  28  21 (75)  9 (32.1)  8 (28.5)     
    Wong et al.45  2003  China  PPIAM  23  16    3 (18.7)  16 (100)  3 (18.7)     
    Wong et al.45  2003  China  PPICM  11    7 (77.7)  8 (88.8)  7 (77.7)     
    Wu et al.47  2006  Taiwan  PPIAC  93  44    30 (68.1)  22 (50)     
    Wu et al.46  2011  Taiwan  PPIAC  120  55    29 (52.7)      1 (1.8) 

    AMO: amoxicillin; CLAR: clarithromycin; MET: metronidazole; PPIAC: proton-pump inhibitor, amoxicillin and clarithromycin; PPIAM: proton-pump inhibitor, amoxicillin and metronidazole; PPICM: proton-pump inhibitor, clarithromycin and metronidazole; QUIN: quinolones; R: resistant; RANCM: ranitidine, clarithromycin and metronidazole; TET: tetracyclines.

Resistance rates to antibiotics not used in first-line

In our review we also analysed the prevalence for other antibiotics not used in first-line treatment: 4.9% resistance to quinolones and 0.05% to tetracyclines. Of the patients who did not receive metronidazole (2719), 405 (14.9%) were resistant.

Discussion

The WHO (World Health Organisation) has classified H. pylori as high-priority on its priority pathogens list, as an infection with a high degree of resistance to antibiotics and as representing a public health problem.48 In line with other published studies,49–52 the results of our review show a high prevalence of secondary resistance to clarithromycin (>50%). The secondary resistance rates to metronidazole are even higher (89.7%). In contrast, secondary resistance to amoxicillin is rare. One interesting fact is that 40.9% have dual resistance to metronidazole and clarithromycin after treatment failure. These figures are in line with data from previous studies in which secondary resistance ranged from 46.9% to 83.3% for clarithromycin, 16.7% to 43.8% for metronidazole and 16.7% to 50% for quinolones.53

We also analysed the prevalence of resistance to other antibiotics that were not administered as first-line. Interestingly, resistance rates to quinolones were low (4.9%) and to tetracycline, almost non-existent (0.05%). In the case of quinolones, the low resistance rate may reflect both a selection of strains sensitive to the antibiotic and a low underlying prevalence. In the case of metronidazole, the “baseline” rate of resistance was 14.9%, much lower than the 89% found after treatment failure.

To our knowledge, this is the first study to systematically assess secondary resistance rates to antibiotics. One of the limitations of our study was the conspicuous lack of data available in Western countries. Moreover, the small number of studies detected does not allow any subgroup analysis.

Our study confirms that it is advisable to avoid the re-administration of clarithromycin after a first failure of eradication therapy. The data on metronidazole, however, are less conclusive. Although different studies and reviews show that treatment with metronidazole at high doses and for 10 days or more may reverse resistance in vitro,54 a recent multicentre observational study shows that repetition of the antibiotic is associated with very low cure rates in the context of failure of a previous metronidazole treatment.55

Of the articles included in our systematic review, a third did not have adequate allocation sequence concealment and blinding of the investigators (Fig. 2). There is therefore a greater risk of bias and the results of the systematic review, as well as the quality of the results, could be affected. It should also be noted that most of the included studies were conducted in Asian populations, and only three in Mediterranean populations, meaning that they are less applicable in clinical practice in our area.

In conclusion, our study suggests that secondary resistance after an initial treatment with metronidazole and clarithromycin is very high. In contrast, resistance to amoxicillin is extremely rare, even after treatment failure.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Appendix A
Supplementary data

The following are the supplementary data to this article:

References
[1]
K.E. McColl.
Clinical practice Helicobacter pylori infection.
N Engl J Med, 362 (2010), pp. 1597-1604
[2]
S.K. Chuah, F.W. Tsay, P.I. Hsu, D.C. Wu.
A new look at anti-Helicobacter pylori therapy.
World J Gastroenterol, 17 (2011), pp. 3971-3975
[3]
J.R. Warren.
Gastric pathology associated with Helicobacter pylori.
Gastroenterol Clin North Am, 29 (2000), pp. 705-751
[4]
P. Malfertheiner, F. Megraud, C.A. O’Morain, J. Atherton, A.T. Axon, F. Bazzoli, et al.
Management of Helicobacter pylori infection – The Maastricht IV/Florence Consensus Report.
[5]
F. Megraud, S. Coenen, A. Versporten, M. Kist, M. Lopez-Brea, A.M. Hirschl, et al.
Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption.
[6]
P. Malfertheiner, F. Megraud, C.A. O’Morain, J.P. Gisbert, E.J. Kuipers, A.T. Axon, et al.
Management of Helicobacter pylori infection – The Maastricht V/Florence Consensus Report.
Gut, 66 (2017), pp. 6-30
[7]
C.A. Fallone, N. Chiba, S.V. van Zanten, L. Fischbach, J.P. Gisbert, H. Hunt, et al.
The Toronto Consensus for the treatment of Helicobacter pylori infection in adults.
Gastroenterology, 151 (2016),
51.e14–69.e14
[8]
W.D. Chey, G.I. Leontiadis, C.W. Howden, S.F. Moss.
ACG clinical guideline: treatment of Helicobacter pylori infection.
Am J Gastroenterol, 112 (2017), pp. 212-239
[9]
J.P. Gisbert, J. Molina-Infante, J. Amador, F. Bermejo, L. Bujanda, X. Calvet, et al.
IV Spanish Consensus Conference on Helicobacter pylori infection treatment.
Gastroenterol Hepatol, 39 (2016), pp. 697-721
[10]
S. Di Caro, L. Fini, Y. Daoud, F. Grizzi, A. Gasbarrini, A. de Lorenzo, et al.
Levofloxacin/amoxicillin-based schemes vs quadruple therapy for Helicobacter pylori erradication in second-line.
World J Gastrotenterol, 18 (2012), pp. 5669-5678
[11]
F. Mégraud.
H. pylori antibiotic resistance: prevalence, importance, and advances in testing.
Gut, 53 (2004), pp. 1374-1384
[12]
M. Selgrad, J. Meissle, J. Bornschein, A. Kandulski, C. Langner, M. Varbanova, et al.
Antibiotic susceptibility of Helicobacter pylori in central Germany and its relationship with the number of eradication therapies.
Eur J Gastroenterol Hepatol, 25 (2013), pp. 1257-1260
[13]
N. Muñoz, J. Sánchez-Delgado, M. Baylina, I. Puig, S. López-Góngora, D. Suarez, et al.
Systematic review, meta-analysis, and meta-regression: successful second-line treatment for Helicobacter pylori.
Helicobacter, 23 (2018), pp. e12488
[14]
A. Liberati, D.G. Altman, J. Tetzlaff, C. Mulrow, P.C. Gøtzsche, J.P. Ioannidis, et al.
The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.
J Clin Epidemiol, 62 (2009), pp. e1-e34
[15]
D.F. Stroup, J.A. Berlin, S.C. Morton, I. Olkin, G.D. Williamson, D. Rennie, et al.
Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group.
JAMA, 283 (2000), pp. 2008-2012
[16]
Cochrane handbook for systematic reviews of interventions. Version 5.1.0,
Available from: https://training.cochrane.org/handbook [accessed September 2017] [updated March 2011]
[17]
T.J. Borody, G. Pang, A.R. Wettstein, R. Clancy, K.R. Herdman, R. Surace, et al.
Efficacy and safety of rifabutin-containing ‘rescue therapy’ for resistant Helicobacter pylori infection.
Aliment Pharmacol Ther, 23 (2006), pp. 481-488
[18]
C.H. Kuo, H.M. Hu, F.C. Kuo, P.I. Hsu, A. Chen, F.J. Yu, et al.
Efficacy of levofloxacin-based rescue therapy for Helicobacter pylori infection after standard triple therapy: a randomized controlled trial.
J Antimicrob Chemother, 63 (2009), pp. 1017-1024
[19]
C.H. Kuo, P.I. Hsu, F.C. Kuo, S. Sophie, W. Wang, H.M. Hu, et al.
Comparison of 10 day bismuth quadruple therapy with high-dose metronidazole or levofloxacin for second-line Helicobacter pylori therapy: a randomized controlled trial.
J Antimicrob Chemother, 68 (2013), pp. 222-228
[20]
C.H. Chi, C.Y. Lin, B.S. Sheu, H.B. Yang, A.H. Huang, J.J. Wu.
Quadruple therapy containing amoxicillin and tetracycline is an effective regimen to rescue failed triple therapy by overcoming the antimicrobial resistance of Helicobacter pylori.
Aliment Pharmacol Ther, 18 (2003), pp. 347-353
[21]
C.M. Liang, J.W. Cheng, C.M. Kuo, K.C. Chang, K.L. Wu, W.C. Tai, et al.
Levofloxacin-containing second-line anti-Helicobacter pylori eradication in Taiwanese real-world practice.
Biomed J, 37 (2014), pp. 326-330
[22]
S.K. Chuah, P.I. Hsu, K.C. Chang, D.C. Wu, K.L. Wu, C.M. Kuo, et al.
Randomized comparison of two non-bismuth-containing second-line rescue therapies for Helicobacter pylori.
Helicobacter, 17 (2012), pp. 216-223
[23]
S.K. Chuah, P.I. Hsu, K.C. Chang, Y.C. Chiu, K.L. Wu, Y.P. Chou, et al.
The efficacy of second-line anti-Helicobacter pylori therapy using an extended 14-day levofloxacin/amoxicillin/proton-pump inhibitor treatment – a pilot study.
Helicobacter, 17 (2012), pp. 374-381
[24]
T. Furuta, M. Kato, M. Sugimoto, M. Sasaki, T. Kamoshida, K. Furukawa, et al.
Triple therapy with ecabet sodium, amoxicillin and lansoprazole for 2 weeks as the rescue regimen for H. pylori infection.
Intern Med, 50 (2011), pp. 369-374
[25]
T. Furuta, N. Shirai, F. Xiao, M. Takashita, M. Sugimoto, M. Kajimura, et al.
High-dose rabeprazole/amoxicillin therapy as the second-line regimen after failure to eradicate H. pylori by triple therapy with the usual doses of a proton pump inhibitor, clarithromycin and amoxicillin.
Hepatogastroenterology, 50 (2003), pp. 2274-2278
[26]
S.D. Georgopoulos, S.D. Ladas, S. Karatapanis, K. Triantafyllou, C. Spiliadi, A. Mentis, et al.
Effectiveness of two quadruple, tetracycline- or clarithromycin-containing, second-line, Helicobacter pylori eradication therapies.
Aliment Pharmacol Ther, 16 (2002), pp. 569-575
[27]
F. Gomollon, J.A. Ducons, M. Ferrero, J. García Cabezudo, R. Guirao, M.A. Simón, et al.
Quadruple therapy is effective for eradicating Helicobacter pylori after failure of triple proton-pump inhibitor-based therapy: a detailed, prospective analysis of 21 consecutive cases.
Helicobacter, 4 (1999), pp. 222-225
[28]
K. Hori, H. Miwa, T. Matsumoto.
Efficacy of 2-week, second-line Helicobacter pylori eradication therapy using rabeprazole amoxicillin, and metronidazole for the Japanese population.
Helicobacter, 16 (2011), pp. 234-240
[29]
H. Isomoto, K. Inoue, H. Furusu, A. Enjoji, C. Fujimotos, M. Yamakawa, et al.
High-dose rabeprazole–amoxicillin versus rabeprazole–amoxicillin–metronidazole as second-line treatment after failure of the Japanese standard regimen for Helicobacter pylori infection.
Aliment Pharmacol Ther, 18 (2003), pp. 101-107
[30]
J.M. Liou, C.C. Chen, M.J. Chen, C.Y. Chang, Y.J. Fang, J.Y. Lee, et al.
Empirical modified sequential therapy containing levofloxacin and high-dose esomeprazole in second-line therapy for Helicobacter pylori infection: a multicentre clinical trial.
J Antimicrob Chemother, 66 (2011), pp. 1847-1852
[31]
Y. Matsumoto, I. Miki, N. Aoyama, D. Shirasaka, Y. Watanabe, Y. Morita, et al.
Levofloxacin- versus metronidazole-based rescue therapy for H. pylori infection in Japan.
Dig Liver Dis, 37 (2005), pp. 821-825
[32]
K. Murakami, T. Okimoto, M. Kodama, R. Sato, K. Watanabe, T. Fujioka.
Evaluation of three different proton pump inhibitors with amoxicillin and metronidazole in retreatment for Helicobacter pylori infection.
J Clin Gastroenterol, 42 (2008), pp. 139-142
[33]
K. Murakami, R. Sato, T. Okimoto, M. Nasu, T. Fujioka, M. Kodama, et al.
Efficacy of triple therapy comprising rabeprazole, amoxicillin and metronidazole for second-line Helicobacter pylori eradication in Japan, and the influence of metronidazole resistance.
Aliment Pharmacol Ther, 17 (2003), pp. 119-123
[34]
K. Murakami, T. Okimoto, M. Kodama, R. Sato, H. Miyajima, M. Ono, et al.
Comparison of amoxicillin–metronidazole plus famotidine or lansoprazole for amoxicillin–clarithromycin–proton pump inhibitor treatment failures for Helicobacter pylori infection.
Helicobacter, 11 (2006), pp. 436-440
[35]
K. Murakami, R. Sato, T. Okimoto, K. Watanabe, M. Nasu, T. Fujioka, et al.
Effectiveness of minocycline-based triple therapy for eradication of Helicobacter pylori infection.
J Gastroenterol Hepatol, 21 (2006), pp. 262-267
[36]
T. Nishizawa, H. Suzuki, T. Masaoka, E. Iwasaki.
A new eradication resistance index as a predictor of metronidazole-containing second-line treatment of Helicobacter pylori.
Digestion, 76 (2007), pp. 215-220
[37]
T. Shimoyama, S. Fukuda, T. Mikami, M. Fukushi, A. Munakata.
Efficacy of metronidazole for the treatment of clarithromycin-resistant Helicobacter pylori infection in a Japanese population.
J Gastroenterol, 39 (2004), pp. 927-930
[38]
N. Shirai, M. Sugimoto, C. Kodaira.
Dual therapy with high doses of rabeprazole and amoxicillin versus triple therapy with rabeprazole, amoxicillin, and metronidazole as a rescue regimen for Helicobacter pylori infection after the standard triple therapy.
Eur J Clin Pharmacol, 63 (2007), pp. 743-749
[39]
T. Kudo, H. Fujinami, T. Ando, J. Nishizawa, K. Ogawa, A. Hosokawa, et al.
Comparison of lafutidine and rabeprazole in 7-day second-line amoxicillin- and metronidazole-containing triple therapy for Helicobacter pylori: a pilot study.
Helicobacter, 17 (2012), pp. 277-281
[40]
J. Togawa, M. Inamori, N. Fujisawa, H. Takahashi, M. Yoneda, H. Kawamura, et al.
Efficacy of a triple therapy with rabeprazole, amoxicillin, and faropenem as second-line treatment after failure of initial Helicobacter pylori eradication therapy.
Hepatogastroenterology, 52 (2005), pp. 645-648
[41]
N. Ueki, K. Miyake, M. Kusunoki, T. Shindo, T. Kawagoe, S. Futagami, et al.
Impact of quadruple regimen of clarithromycin added to metronidazole-containing triple therapy against Helicobacter pylori infection following clarithromycin-containing triple-therapy failure.
Helicobacter, 14 (2009), pp. 91-99
[42]
H. Watanabe, N. Aoyama, D. Shirasaka, S. Maekawa, K. Kuroda, I. Miki, et al.
Levofloxacin based triple therapy as a second-line treatment after failure of Helicobacter pylori eradication with standart triple therapy.
Dig Liver Dis, 35 (2003), pp. 711-715
[43]
W.C. Tai, C.H. Lee, S.S. Chiou, C.M. Kuo, C.H. Kuo, C.H. Liang, et al.
The clinical and bacteriological factors for optimal levofloxacin-containing triple therapy in second-line Helicobacter pylori eradication.
[44]
W.M. Wong, B.C. Wong, H. Lu, Q. Gu, Y. Yin, H. Wang, et al.
One-week omeprazole, furazolidone and amoxicillin rescue therapy after failure of Helicobacter pylori eradication with standard triple therapies.
Aliment Pharmacol Ther, 16 (2002), pp. 793-798
[45]
W.M. Wong, Q. Gu, S.K. Lam, Y. Fung, C. Lai, W.H. Hu, et al.
Randomized controlled study of rabeprazole, levofloxacin and rifabutin triple therapy vs. quadruple therapy as second-line treatment for Helicobacter pylori infection.
Aliment Pharmacol Ther, 17 (2003), pp. 553-560
[46]
D.C. Wu, P.I. Hsu, H.H. Tseng, F.W. Tsay, K.H. Lai, C.H. Kuo, et al.
Helicobacter pylori infection: a randomized, controlled study comparing 2 rescue therapies after failure of standard triple therapies.
Medicine (Baltimore), 90 (2011), pp. 180-185
[47]
D.C. Wu, P.I. Hsu, A. Chen, H. Lai, F.W. Tsay, C.J. Wu, et al.
Randomized comparison of two rescue therapies for Helicobacter pylori infection.
Eur J Clin Invest, 36 (2006), pp. 803-809
[48]
E. Tacconelli, E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson, D.L. Monnet.
Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis.
Lancet Infect Dis, 18 (2018), pp. 318-327
[49]
I. Thung, H. Aramin, V. Vavinskaya, S. Gupta, Y. Park, E. Crowe, et al.
Review article: The global emergence of Helicobacter pylori antibiotic resistance.
Aliment Pharmacol Ther, 43 (2016), pp. 514-533
[50]
A.C. Marin, A.G. McNicholl, J.P. Gisbert.
A review of rescue regimens after clarithromycin-containing triple therapy failure (for Helicobacter pylori eradication).
Expert Opin Pharmacother, 14 (2013), pp. 843-861
[51]
R. Ghotaslou, H.E. Leylabadlo, Y.M. Asi.
Prevalence of antibiotic resistance in Helicobacter pylori: a recent literature review.
World J Methodol, 5 (2015), pp. 164-174
[52]
A. Pilotto, M. Franceschi, M. Rassu, G. Leandro, L. Bozzola, F. Furian, et al.
Incidence of secondary Helicobacter pylori resistance to antibiotics in treatment failures after 1-week proton inhibitor-based triple therapies: a prospective study.
Dig Liver Dis, 32 (2000), pp. 667-672
[53]
J.W. Lee, N. Kim, J.M. Kim, R.H. Nam, H. Chang, J.Y. Kim, et al.
Prevalence of primary and secondary antimicrobial resistance of Helicobacter pylori in Korea form 2003 through 2012.
Helibocacter, 18 (2013), pp. 206-214
[54]
D.Y. Graham, M.S. Osato, J. Hoffman, A.R. Opekun, S.Y. Anderson, D.H. Kwon, et al.
Metronidazole containing quadruple therapy for infection with metronidazole resistant Helicobacter pylori: a prospective study.
Aliment Pharmacol Ther, 14 (2000), pp. 745-750
[55]
I. Puig, J.M. González-Santiago, J. Molina-Infante, J. Barrio, M.T. Herranz, A. Algaba, et al.
Fourteen-day high-dose esomeprazole, amoxicillin and metronidazole as third-line treatment for Helicobacter pylori infection.
Int J Clin Pract, 71 (2017),

Please cite this article as: Muñoz N, Sánchez-Delgado J, Baylina M, López-Góngora S, Calvet X. Prevalencia de las resistencias de Helicobacter pylori tras el fracaso de una primera línea de tratamiento. Revisión sistemática. Gastroenterol Hepatol. 2018;41:654–662.

Copyright © 2018. Elsevier España, S.L.U.. All rights reserved
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos

Quizás le interese:
10.1016/j.gastre.2021.07.001
No mostrar más