metricas
covid
Buscar en
Revista Argentina de Microbiología
Toda la web
Inicio Revista Argentina de Microbiología Are Mycoplasma pneumoniae coinfections frequent in COVID-19 patients? A systemat...
Información de la revista
Vol. 56. Núm. 3.
Páginas 258-264 (julio - septiembre 2024)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
520
Vol. 56. Núm. 3.
Páginas 258-264 (julio - septiembre 2024)
Special article
Acceso a texto completo
Are Mycoplasma pneumoniae coinfections frequent in COVID-19 patients? A systematic review
¿Son frecuentes las coinfecciones con Mycoplasma pneumoniae en pacientes con COVID-19? Una revisión sistemática
Visitas
520
Jessica Mosmanna,1,
Autor para correspondencia
jessica.mosmann@unc.edu.ar

Corresponding author.
, María Celia Frutosa,h,1, Javier Anibal Origliab, María Lucia Gallo Vauletc, Miriam Gabriela Garcíad, Gabriela Vilare, Celeste Péreze, María Julia Madariagag, Cecilia Cuffinia,h,2, María Estela Cadarioe,f,2
a Instituto de Virología, Dr. J.M. Vanella, Facultad de Ciencias Médicas – Universidad Nacional de Córdoba, Córdoba, Argentina
b Cátedra de Patología de Aves y Pilíferos, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
c Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Cátedra de Microbiología Clínica, Buenos Aires, Argentina
d Laboratorio de Virología y Biología Molecular, Hospital Interzonal General Agudos Pedro Fiorito, Buenos Aires, Argentina
e Departamento de Bacteriología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
f Departamento de Virología, INEI-ANLIS Dr. Carlos G Malbrán, Ciudad Autónoma de Buenos Aires, Argentina
g Sección Serología y Pruebas Biológicas, Instituto de Zoonosis Luis Pasteur, Ciudad Autónoma de Buenos Aires, Argentina
h Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (1)
Tablas (1)
Table 1. Summary of studies reporting the incidence of M. pneumoniae co- and secondary infection among COVID-19 patients.
Abstract

Understanding the proportion of SARS-CoV-2 patients with Mycoplasmapneumoniae coinfection is crucial for treating patients suffering from coronavirus disease (COVID-19), help to ensure responsible use of antibiotics and minimize the negative consequences of overuse. In addition, this knowledge could have an impact on empirical antibiotic management guidelines for patients with COVID-19. This systematic review aimed to identify the prevalence of M. pneumoniae in patients with coronavirus disease 2019 (COVID-19).

A bibliographic search of studies published in Spanish or English was conducted using the PubMed search engine. Fourteen articles from different continents (America, Asia and Europe) were included, involving a total of 5855 patients in these studies. The mean age of COVID-19 patients with M. pneumoniae was 48 years old (range 1–107), most of whom were male. The detection of laboratory-confirmed M. pneumoniae infection varied between 0 and 33.3%. Most of patients referred fever, cough, and dyspnea, and received empirical antibiotic treatment. Bacterial coinfection was not associated with increased ICU admission and mortality. The prevalence of coinfection showed extremely dissimilar figures according to the population studied and diagnostic criteria. However, it is important to develop Latin American studies, given the heterogeneity observed in the studies conducted in different countries. Standardized definitions should be developed in order to be able to assess the impact of coinfections in patients with a diagnosis of COVID-19.

Keywords:
SARS-CoV-2 infection
COVID-19
Mycoplasma pneumoniae
Coinfection
Resumen

Comprender la proporción de coinfección por coronavirus (COVID-19) y Mycoplasma pneumoniae es crucial para tratar a los pacientes con COVID-19, garantizando el empleo responsable de antibióticos y minimizando las consecuencias negativas del uso excesivo. Además, este conocimiento podría tener un impacto en las pautas de manejo empírico de antibióticos en pacientes con COVID-19. Esta revisión sistemática tuvo como objetivo identificar la prevalencia de M. pneumoniae en pacientes con COVID-19. Para ello se realizó una búsqueda bibliográfica de estudios publicados en español o inglés utilizando el buscador PubMed. Se incluyeron 14 artículos de diferentes continentes (América, Asia y Europa), con un total de 5855 pacientes estudiados. La media de edad de los pacientes COVID-19 con M. pneumoniae fue de 48 años (intervalo: 1 a 107 años) y la mayoría de ellos fueron varones. La detección de M. pneumoniae confirmada por laboratorio en pacientes con COVID-19 varió del 0 al 33,3%. La mayoría de los pacientes refirieron fiebre, tos y disnea, y recibieron antibióticos empíricos. La coinfección bacteriana no se asoció con un aumento de la admisión en UCI ni de la mortalidad. La prevalencia de coinfección fue muy disímil según la población estudiada y los criterios diagnósticos empleados. Dada la heterogeneidad de resultados en los diferentes países, es importante desarrollar estudios en América Latina, como así también establecer definiciones estandarizadas para poder evaluar el impacto real de las coinfecciones en pacientes con COVID-19.

Palabras clave:
Infección por SARS-CoV-2
COVID-19
Mycoplasma pneumoniae
Coinfección
Texto completo
Introduction

Mycoplasma pneumoniae (M.pneumoniae) commonly causes infections of the respiratory system among all age groups42. This microorganism is one of the leading causes of community-acquired pneumonia (CAP), especially in children. Most pneumonia cases are benign, whereas some of them may develop into severe pneumonia and refractory pneumonia with pleural effusion, multi-organ dysfunction, and serious long-term sequelae, including bronchiolitis obliterans and bronchiectasis16. Airborne droplets containing M. pneumoniae can be transmitted and spread among people through coughing and sneezing. In most cases, clinical symptoms are non-specific and cough is the main symptom, which is usually paroxysmal and often persistent43. Coinfection of M. pneumoniae has been identified in viral pneumonia40. At present, coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 virus has spread to almost every part of the world. The combination of SARS-CoV-2 infection and other respiratory pathogens is a challenge for health care systems in terms of diagnosis, treatment, and management. Although viral infection and bacterial infection are essentially different in terms of pathogenesis, the clinical manifestations of COVID-19 and CAP, such as fever, dry cough, fatigue, all-over ache and chest tightness46, are similar. Clinical practice indicates that reactive lymphocytes are frequently observed in COVID-19 infection, while in M. pneumoniae infection cold agglutination is common20. There are only subtle differences in radiographic features between these two infections17.

Several studies have reported a wide range of coinfection rates in SARS-CoV-2 patients, with rates ranging from 3% to more than 20% being reported24. Therefore, studies that identify the pathogens coinfecting COVID-19 patients and the evaluation of their impact on the clinical outcome are crucial. These data may guide clinicians to establish a directed antimicrobial therapy, decrease the irrational use of antibiotics and improve the clinical outcome.

The objective was to assess the molecular prevalence of coinfection with this atypical bacterium in COVID-19 patients and describe the clinical features, laboratory parameters, complications, clinical outcomes of such coinfections, to determine the importance of detecting M. pneumoniae in patients with COVID 19 and establishing an adequate treatment.

Materials and methods

A systematic review of the literature was performed focusing on the identification of M. pneumoniae coinfections in SARS-CoV-2 patients. PubMed was searched using a combination of key terms such as COVID-19 and M. pneumoniae, SARS-COV-2 and M. pneumoniae, bacterial coinfections and COVID-19, pneumonia and SARS-COV-2, pneumonia and COVID-19. We also used the same terms in Spanish and included articles written in English and Spanish (the primary languages of the investigators). We also reviewed the reference lists for the articles identified by our search, as well as those of any included studies. We only included those studies using molecular methods for M. pneumoniae detection and excluded all studies employing culture or serology techniques for M. pneumoniae identification.

Data abstraction

Each abstract and the articles selected for full review were evaluated by all investigators. For each included article, the study characteristics and data regarding detection were abstracted by the authors. For detection data, defined cases were included and possible cases were excluded. For each report, the type of surveillance used, number of cases reported and total population studies were documented. This review was conducted and reported according to the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow-charts (Fig. 1).

Figure 1.

PRISMA flow-chart.

(0.23MB).
Results and discussion

The literature search yielded 103 studies. After a first screening, 64 were excluded because they were not related to the subject and 4 were duplicate. After full text reading, 14 studies were included (Fig. 1). Specifically, four of the studies were retrospective and ten were prospective. Most studies were from the USA, Brazil, China and France and the remaining ones from the United Kingdom, Spain, India, Turkey, Peru and Iran. A total of 5855 COVID-19 patients were identified and included in our review (Table 1).

Table 1.

Summary of studies reporting the incidence of M. pneumoniae co- and secondary infection among COVID-19 patients.

Authors  Country  Type of study  Agea  Overall rate of coinfection (%)  M. pneumomiae/SARS-CoV-2 (%)  Diagnostic methods  Treatment  Outcomes of COVID19/M. pneumoniae patients (%) 
Blasco et al., 20202  Spain  Retrospective  64  3/103 (2.9)  1/3 (33.3)  Multiplex PCR assay  NR  NR 
Boschiero et al., 20223  Brazil  Prospective  NR  84/1503 (5.6)  2/84 (2.38)  RT-PCR (respiratory pathogen panel)  NR  NR 
Chaudry et al., 20225  India  Prospective  50  17/194 (8.7)  3/17 (17.6)  RT-PCR (CARDS toxin gene)  Azithromycin, or fluoroquinolones, or doxycycline  NR 
Chi et al., 20206  China  Retrospective  53.5  0/17 (0.0)  0/0 (0.0)  Multiplex PCR  NR  NA 
Contou et al., 20208  France  Retrospective  61  26/92 (28.0)  0/26 (0.0)  RT-PCR (respiratory pathogen panel)  NR  NA 
Easom et al., 202012  United Kingdom  Prospective  42.4  29/67 (43.3)  1/67 (1.5)  Multiplex PCR  Doxycycline and monofloxacin 
Hazra et al., 202019  USA  Prospective  NR  15/459 (3.0)  0/459 (0.0)  RT-PCR (respiratory pathogen panel)  NR  NA 
Husain et al., 202221  France  Retrospective  69  22/784 (2.8)  2/22 (9.1)  Multiplex PCR  NR  NR 
Karaaslan et al., 202123  Turkey  Retrospective  10  7/93 (7.5)  1/93 (1.07)  PCR  Azithromycin 
Kim et al., 202024  USA  Prospective  49  23/115 (20.0)  0/116 (0.0)  RT-PCR (respiratory pathogen panel)  NR  NA 
Pérez-Lazo et al., 202130  Peru  Prospective  58  154/295 (52.2)  83/295 (28.1)  PCR  Azithromycin  15 (18.1) died 
Richardson et al. 202034  USA  Prospective  63  42/1996 (2.1%)  1/42 (2.4)  RT-PCR (respiratory pathogen panel)  NR  NR 
Soltani et al., 202138  Iran  Prospective  52  10/40 (25.0)  9/40 (22.5)  PCR (P1 adhesion gene)  NR  NR 
Varela et al., 202241  Brazil  Prospective  31/97 (31.9)  0/31 (0.0)  RT-PCR (respiratory pathogen panel)  Azithromycin  NA 
a

Years (mean). NR: not reported. NA: not applicable. M. pneumoniae: Mycoplasmapneumoniae.

Concerns regarding coinfections during viral pandemics, specifically coinfections with respiratory bacterial pathogens, are borne from the experience in H1N1 influenza A, Severe Acute Respiratory Syndrome (SARS) and Middle East respiratory syndrome (MERS)1,22,33. In these outbreaks, as in the COVID-19 pandemic, much lower coinfection rates with M. pneumoniae were reported5,11,36,39,45. The prevalence of reported M. pneumoniae infections in COVID-19 patients ranged from 0–33.3% in the retrospective studies and 0–28.1% in the prospective studies. These differences in the proportion of coinfection may be attributable to the selection of case-patients (adults or children), geographic factors, season and the clinical condition9,10,25,27. High prevalence of coinfection between M. pneumoniae and SARS CoV-2 was described using serological methods18,28,47. However, these methods are not highly specific tests and may result in an overestimation of infections37. In general, the bacterium less frequently found in coinfection with SARS-COV-2 is M. pneumoniae13,15,16. Many of the most recent studies showed that coinfections appeared to be relatively rare. However, due to the variability between countries and the limited country/region representation in the few studies published, the results shown cannot be extrapolated to Latin America. That is why it is important to generate local evidence to support decision-making. In Argentina, only one multicenter study reported the presence of M. pneumoniae in 12.3% (24/187) of COVID-19 patients, using nested-PCR14.

In two studies (Table 1), most patients who had contracted a bacterial respiratory infection did not test positive for COVID-193,4,24. The median age of COVID-19 patients studied for M. pneumoniae was 48 years old (range 1–107), most of whom were male2,5,8,21,23,30,34,38. This observation is not consistent with the established literature that indicates that community-acquired viral coinfections are more common in younger populations35.

The most common clinical symptoms in COVID-19 coinfected patients were fever, cough and dyspnea5,6,12,21,23,30,38. However, these symptoms are similar among COVID-19 monoinfections and coinfections with other pathogens, which made the clinical differentiation difficult. Thus, laboratory confirmation is required.

The clinical presentations of M. pneumoniae range from mild infections affecting the upper respiratory tract to pneumonia that needs hospital admission43. It has been proposed that pathogens such as M. pneumoniae can exacerbate clinical symptoms, increase morbidity and prolong the stay in the intensive care unit (ICU) in COVID-19 patients5,13,23,30,34. Boschiero et al., 20223 did not find an association between coinfections and more severe COVID-19-related outcomes in Brazil, while Perez-Lazo et al., 202130 reported a high rate of mortality in Peru (18.1%). The authors described an elevated development of sepsis in the group with M. pneumoniae coinfections (37.4%); however, they found that mortality was similar among coinfected and monoinfected groups30. In two studies included in this review a lower mortality rate was found12,23, whereas the remaining studies did not report any mortality rates2,3,5,21,34,38. Lower rates of comorbidities, such as hypertension, diabetes mellitus, renal disease and obesity5,30 were described in coinfected patients.

Antibiotic use was reported in five studies5,12,23,30,41, with >50% of patients receiving empirical antibiotics30. This is particularly important in Latin America, where the abuse of antibiotics in COVID-19 patients has reached alarming levels7,32. The finding that there was a low number of patients with bacterial infections, such as M. pneumoniae, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae, highlights the fact that the empirical use of antibiotics in patients with COVID-19 should not be recommended26,29,31,44. The COVID-19 pandemic exacerbated the known challenges to optimal antibiotic administration, representing a direct threat to patient safety and public health through antibiotic overprescription and promotion of bacterial resistance.

Unfortunately, there were no specific data on clinical information and therapeutic interventions. Due to the diversity of studies and the low number of patients with detected coinfection with M. pneumoniae, it was difficult to find symptoms indicating coinfection with M. pneumoniae and SARS-CoV-2 in the studies included in our review.

Despite the fact that M. pneumoniae coinfections were searched and infrequently documented in patients with COVID-19 pneumonia, routine testing for respiratory pathogens should be advised, since agents for which specific therapy can be prescribed may be detected and may have a beneficial impact on patient outcomes.

Ethical approval

Not required.

Funding

None.

Conflict of interests

The authors declare that they have no conflicts of interest.

References
[1]
Y.M. Arabi, A. Al-Omari, Y. Mandourah, F. Al-Hameed, A.A. Sindi, B. Alraddadi, S. Shalhoub, A. Almotairi, K. Al Khatib, A. Abdulmomen, I. Qushmaq, A. Mady, O. Solaiman, A.M. Al-Aithan, R. Al-Raddadi, A. Ragab, G.A. Al Mekhlafi, A. Al Harthy, A. Kharaba, M.A. Ahmadi, M. Sadat, H.A. Mutairi, E.A. Qasim, J. Jose, M. Nasim, A. Al-Dawood, L. Merson, R. Fowler, F.G. Hayden, H.H. Balkhy, Saudi Critical Care Trial Group.
Critically ill patients with the middle East respiratory syndrome: a multicenter retrospective cohort study.
Crit Care Med, 45 (2017), pp. 1683-1695
[2]
M.L. Blasco, J. Buesa, J. Colomina, M.J. Forner, M.J. Galindo, J. Navarro, J. Noceda, J. Redón, J. Signes-Costa, D. Navarro.
Co-detection of respiratory pathogens in patients hospitalized with Coronavirus viral disease-2019 pneumonia.
J Med Virol, 92 (2020), pp. 1799-1801
[3]
M.N. Boschiero, A. Duarte, C.V.C. Palamim, A.E. Alvarez, R.M. Mauch, F.A.L. Marson.
Frequency of respiratory pathogens other than SARS-CoV-2 detected during COVID-19 testing.
Diagn Microbiol Infect Dis, 102 (2022), pp. 115576
[4]
A. Calcagno, V. Ghisetti, E. Burdino, M. Trunfio, T. Allice, L. Boglione, S. Bonora, G. Di Perri.
Coinfection with other respiratory pathogens in COVID-19 patients.
Clin Microbiol Infect, 27 (2021), pp. 297-298
[5]
R. Chaudhry, K. Sreenath, P. Batra, E.V. Vinayaraj, N. Rathor, K. Saikiran, A. Aravindan, V. Singh, M. Brijwal, M. Soneja, N. Verma, R. Subramanium, U.B. Singh, R. Guleria.
Atypical bacterial coinfections among patients with COVID-19: a study from India.
J Med Virol, 94 (2022), pp. 303-309
[6]
Q. Chi, X. Dai, X. Jiang, L. Zhu, J. Du, Y. Chen, J. Zheng, J. Huang.
Differential diagnosis for suspected cases of coronavirus disease 2019: a retrospective study.
BMC Infect Dis, 20 (2020), pp. 679
[7]
C.M. Chiara Chilet, M. Saavedra Velasco.
Control de antibióticos en tiempos de COVID-19 ¿verdad o mito?.
Rev Fac Med Humana, 20 (2020),
[8]
D. Contou, A. Claudinon, O. Pajot, M. Micaëlo, P. Longuet Flandre, M. Dubert, R. Cally, E. Logre, M. Fraissé, H. Mentec, G. Plantefève.
Bacterial and viral coinfections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU.
Ann Intensive Care, 10 (2020), pp. 119
[9]
M.J. Cox, N. Loman, D. Bogaert, J. O’Grady.
Coinfections: potentially lethal and unexplored in COVID-19.
Lancet Microbe, 1 (2020), pp. e11
[10]
B. Davis, A.N. Rothrock, S. Swetland, H. Andris, P. Davis, S.G. Rothrock.
Viral and atypical respiratory coinfections in COVID-19: a systematic review and meta-analysis.
J Am Coll Emerg Physicians Open, 1 (2020), pp. 533-548
[11]
A. Dhanoa, N.C. Fang, S.S. Hassan, P. Kaniappan, G. Rajasekaram.
Epidemiology and clinical characteristics of hospitalized patients with pandemic influenza A (H1N1) 2009 infections: the effects of bacterial coinfection.
[12]
N. Easom, P. Moss, G. Barlow, A. Samson, T. Taynton, K. Adams, M. Ivan, P. Burns, K. Gajee, K. Eastick, P.J. Lillie.
Sixty-eight consecutive patients assessed for COVID-19 infection: experience from a UK Regional infectious diseases Unit.
Influenza Other Respir Viruses, 14 (2020), pp. 374-379
[13]
B.E. Fan, K.G.E. Lim, V.C.L. Chong, S.S.W. Chan, K.H. Ong, P. Kuperan.
COVID-19 and Mycoplasma pneumoniae coinfection.
Am J Hematol, 95 (2020), pp. 723-724
[14]
Favier P, Piñeiro F, Serio E, Damico N, De Izarbe M, Pinilla F, Muñoz C, Arteaga A, Kumar L, Prismot I, Gallino I, Pérez J, Raffo C, Carrillo J, Hermida L, Luna C, Padilla M, Montiel G, Ripoll P, Kovac A, Andreani M, Gorbaran V, Rodríguez O, Guelfand L, Abusamra L, Sisto A, Prieto M, Vilar G, Lara C, Motter A, Nusblat L, Moncalero S, Rolón MJ, Cadario ME. Prevalence of atypical pathogens in SARS-CoV 2 coinfection in Argentina: finding what we were not looking for. 31st European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). July 2021.
[15]
L.W. Gao, J. Yin, Y.H. Hu, X.Y. Liu, X.L. Feng, J.X. He, J. Liu, Y. Guo, B.P. Xu, K.L. Shen.
The epidemiology of paediatric Mycoplasma pneumoniae pneumonia in North China: 2006–2016.
Epidemiol Infect, 147 (2019), pp. e192
[16]
Z.A. Gao, L.B. Gao, X.J. Chen, Y. Xu.
Fourty-nine years old woman coinfected with SARS-CoV-2 and Mycoplasma: a case report.
World J Clin Cases, 8 (2020), pp. 6080-6085
[17]
V. Gayam, V.M. Konala, S. Naramala, P.R. Garlapati, M.A. Merghani, N. Regmi, M. Balla, S. Adapa.
Presenting characteristics, comorbidities, and outcomes of patients coinfected with COVID-19 and Mycoplasma pneumoniae in the USA.
J Med Virol, 92 (2020), pp. 2181-2187
[18]
M. Guarino, B. Perna, F. Cuoghi, M.D. Spampinato, A.E. Cesaro, F. Manza, A. Pretula, A. Grilli, M. Maritati, G. Caio, A. Carnevale, M.E. Flacco, R. De Giorgio, C. Contini.
Role of intracellular pulmonary pathogens during SARS-CoV-2 infection in the first pandemic wave of COVID-19: clinical and prognostic significance in a case series of 1200 patients.
Microorganisms, 10 (2022), pp. 1636
[19]
A. Hazra, M. Collison, J. Pisano, M. Kumar, C. Oehler, J.P. Ridgway.
Coinfections with SARS-CoV-2 and other respiratory pathogens.
Infect Control Hosp Epidemiol, 41 (2020), pp. 1228-1229
[20]
A.C. Huang, C.G. Huang, C.T. Yang, H.C. Hu.
Concomitant infection with COVID-19 and Mycoplasma pneumoniae.
Biomed J, 43 (2020), pp. 458-461
[21]
M. Husain, S. Valayer, N. Poey, E. Rondinaud, C. d’Humières, B. Visseaux, S. Lariven, F.X. Lescure, L. Deconinck.
Pulmonary bacterial infections in adult patients hospitalized for COVID-19 in standard wards.
Infect Dis Now, 52 (2022), pp. 208-213
[22]
T.N. Jang, D.Y. Yeh, S.H. Shen, C.H. Huang, J.S. Jiang, S.J. Kao.
Severe acute respiratory syndrome in Taiwan: analysis of epidemiological characteristics in 29 cases.
J Infect, 48 (2004), pp. 23-31
[23]
A. Karaaslan, C. Çetin, Y. Akın, S. Demir Tekol, E. Söbü, R. Demirhan.
Coinfection in SARS-CoV-2 infected children patients.
J Infect Dev Ctries, 15 (2021), pp. 761-765
[24]
D. Kim, J. Quinn, B. Pinsky, N.H. Shah, I. Brown.
Rates of coinfection between SARS-CoV-2 and other respiratory pathogens.
JAMA, 323 (2020), pp. 2085-2086
[25]
B.J. Langford, M. So, S. Raybardhan, V. Leung, D. Westwood, D.R. MacFadden, J.P.R. Soucy, N. Daneman.
Bacterial coinfection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis.
Clin Microbiol Infect, 26 (2020), pp. 1622-1629
[26]
B.J. Langford, M. So, S. Raybardhan, V. Leung, J.R. Soucy, D. Westwood, N. Daneman, D.R. MacFadden.
Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis.
Clin Microbiol Infect, 27 (2021), pp. 520-521
[27]
L. Lansbury, B. Lim, V. Baskaran, W.S. Lim.
Coinfections in people with COVID-19: a systematic review and meta-analysis.
J Infect, 81 (2020), pp. 266-275
[28]
Y. Li, H. Wang, F. Wang, X. Lu, H. Du, J. Xu, F. Han, L. Zhang, M. Zhang.
Coinfections of SARS-CoV-2 with multiple common respiratory pathogens in infected children: a retrospective study.
Medicine (Baltimore), 100 (2021), pp. e24315
[29]
C.E. Oldenburg, B.A. Pinsky, J. Brogdon, C. Chen, K. Ruder, L. Zhong, F. Nyatigo, C.A. Cook, A. Hinterwirth, E. Lebas, T. Redd, T.C. Porco, T.M. Lietman, B.F. Arnold, T. Doan.
Effect of oral azithromycin vs placebo on COVID-19 symptoms in outpatients with SARS-CoV-2 infection: a randomized clinical trial.
JAMA, 326 (2021), pp. 490-498
[30]
G. Pérez-Lazo, W. Silva-Caso, J. Del Valle-Mendoza, A. Morales-Moreno, J. Ballena-López, F. Soto-Febres, J. Martins-Luna, H. Carrillo-Ng, L.J. Del Valle, S. Kym, M.A. Aguilar-Luis, I. Peña-Tuesta, C. Tinco-Valdez, L.R. Illescas.
Identification of coinfections by viral and bacterial pathogens in COVID-19 hospitalized patients in Peru: molecular diagnosis and clinical characteristics.
Antibiotics (Basel), 10 (2021), pp. 1358
[31]
PRINCIPLE Trial Collaborative Group.
Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (PRINCIPLE): a randomised, controlled, open-label, adaptive platform trial.
Lancet, 397 (2021), pp. 1063-1074
[32]
M.S. Pulia, I. Wolf, L.T. Schulz, A. Pop-Vicas, R.J. Schwei, P.K. Lindenauer.
COVID-19: an emerging threat to antibiotic stewardship in the emergency department.
West J Emerg Med, 21 (2020), pp. 1283-1286
[33]
T.W. Rice, L. Rubinson, T.M. Uyeki, F.L. Vaughn, B.B. John, R.R. Miller 3rd, E. Higgs, A.G. Randolph, B.E. Smoot, B.T. Thompson, NHLBI ARDS Network.
Critical illness from 2009 pandemic influenza A virus and bacterial coinfection in the United States.
Crit Care Med, 40 (2012), pp. 1487-1498
[34]
S. Richardson, J.S. Hirsch, M. Narasimhan, J.M. Crawford, T. McGinn, K.W. Davidson, D.P. Barnaby, L.B. Becker, J.D. Chelico, S.L. Cohen, J. Cookingham, K. Coppa, M.A. Diefenbach, A.J. Dominello, J. Duer-Hefele, L. Falzon, J. Gitlin, N. Hajizadeh, T.G. Harvin, D.A. Hirschwerk, E.J. Kim, Z.M. Kozel, L.M. Marrast, J.N. Mogavero, G.A. Osorio, M. Qiu, T.P. Zanos.
Presenting characteristics, comorbidities and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area.
J Am Med Assoc, 323 (2020), pp. 2052-2059
[35]
O. Ruuskanen, E. Lahti, L.C. Jennings, D.R. Murdoch.
Viral pneumonia.
Lancet, 377 (2011), pp. 1264-1275
[36]
A. Sangil, E. Calbo, A. Robles, S. Benet, M.E. Viladot, V. Pascual, E. Cuchí, J. Pérez, B. Barreiro, B. Sánchez, J. Torres, L. Canales, J.A. De Marcos, J. Garau.
Aetiology of community-acquired pneumonia among adults in an H1N1 pandemic year: the role of respiratory viruses.
Eur J Clin Microbiol Infect Dis, 31 (2012), pp. 2765-2772
[37]
B.M. Sobieszczańska, U. Kasprzykowska, A. Duda-Madej, A. Secewicz, J. Marciniak, G. Gościniak.
Relevance of serology for Mycoplasma pneumoniae infection among children with persistent cough.
Adv Clin Exp Med, 23 (2014), pp. 185-190
[38]
S. Soltani, M. Zandi, M. Fani, S. Elhami, A. Zakeri, R. Pakzad, S. Abbasi.
Mycoplasma pneumoniae and Legionella pneumophila coinfection with SARS-CoV-2 infections in COVID-19 patients living in Abadan, Iran.
Afr J Respir Med, 16 (2021), pp. 1-4
[39]
K.W. Tsang, P.L. Ho, G.C. Ooi, W.K. Yee, T. Wang, M. Chan-Yeung, W.K. Lam, W.H. Seto, L.Y. Yam, T.M. Cheung, P.C. Wong, B. Lam, M.S. Ip, J. Chan, K.Y. Yuen, K.N. Lai.
A cluster of cases of severe acute respiratory syndrome in Hong Kong.
N Engl J Med, 348 (2003), pp. 1977-1985
[40]
K.K. To, K.H. Ng, T.L. Que, J.M. Chan, K.Y. Tsang, A.K. Tsang, H. Chen, K.Y. Yuen.
Avian influenza A H5N1 virus: a continuous threat to humans.
Emerg Microbes Infect, 1 (2012), pp. e25
[41]
F.H. Varela, I.T.S. Sartor, M. Polese-Bonatto, T.R. Azevedo, L.B. Kern, T. Fazolo, C.N. de David, G.O. Zavaglia, I.R. Fernandes, J.R.M. Krauser, R.T. Stein, M.C. Scotta.
Rhinovirus as the main co-circulating virus during the COVID-19 pandemic in children.
J Pediatr (Rio J), 98 (2022), pp. 579-586
[42]
K.B. Waites, D.F. Talkington.
Mycoplasma pneumoniae and its role as a human pathogen.
Clin Microbiol Rev, 17 (2004), pp. 697-728
[43]
K.B. Waites, L. Xiao, Y. Liu, M.F. Balish, T.P. Atkinson.
Mycoplasma pneumoniae from the respiratory tract and beyond.
Clin Microbiol Rev, 30 (2017), pp. 747-809
[44]
L. Wang, A.K. Amin, P. Khanna, A. Aali, A. McGregor, P. Bassett, G. Gopal Rao.
An observational cohort study of bacterial coinfection and implications for empirical antibiotic therapy in patients presenting with COVID-19 to hospitals in North West London.
J Antimicrob Chemother, 76 (2021), pp. 796-803
[45]
G. Zahariadis, T.A. Gooley, P. Ryall, C. Hutchinson, M.I. Latchford, M.A. Fearon, F.B. Jamieson, S. Richardson, T. Kuschak, B. Mederski.
Risk of ruling out severe acute respiratory syndrome by ruling in another diagnosis: variable incidence of atypical bacteria coinfection based on diagnostic assays.
Can Respir J, 13 (2006), pp. 17-22
[46]
L. Zha, J. Shen, B. Tefsen, Y. Wang, W. Lu, Q. Xu.
Clinical features and outcomes of adult COVID-19 patients coinfected with Mycoplasma pneumoniae.
J Infect, 81 (2020), pp. 12-15
[47]
Q. Xing, G. Li, Y. Xing, T. Chen, W. Li, W. Ni, K. Deng, R. Gao, C. Chen, Y. Gao, Q. Li, G. Yu, J. Tong, W. Li, G. Hao, Y. Sun, A. Zhang, Q. Wu, Z. Li, S. Pan.
Precautions are needed for COVID19 patients with coinfection of common respiratory pathogens.

Grupo de Trabajo Bacterias Atípicas, Sociedad Argentina de Bacteriología, Micología y Parasitología Clínicas (SADEBAC), División de la Asociación Argentina de Microbiología.

These first authors contributed equally to this work.

These authors contributed equally to this work.

Copyright © 2024. Asociación Argentina de Microbiología
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos