metricas
covid
Buscar en
Revista Argentina de Microbiología
Toda la web
Inicio Revista Argentina de Microbiología Inhibitory action of antibiotics on Kluyveromyces marxianus
Información de la revista
Vol. 56. Núm. 2.
Páginas 134-139 (abril - junio 2024)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
499
Vol. 56. Núm. 2.
Páginas 134-139 (abril - junio 2024)
Original article
Acceso a texto completo
Inhibitory action of antibiotics on Kluyveromyces marxianus
Acción inhibitoria de los antibióticos sobre Kluyveromyces marxianus
Visitas
499
Rafael Lisandro Althaus
Autor para correspondencia
ralthaus@fcv.unl.edu.ar

Corresponding author.
, Orlando Guillermo Nagel, Dafna Eluk
Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral – R.P.L. Kreder 2805, 3080 Esperanza, Argentina
Highlights

  • The inhibition of antibiotics is detected with a simple bioassay in a short time.

  • Cephalosporins, quinolones and tetracyclines inhibits the growth of K. marxianus.

  • Similar bioassays could analyze the antibiotic susceptibility of pathogenic yeasts.

Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Figuras (1)
Tablas (1)
Table 1. Logistic equations that represent the effect of antibiotic concentrations on the growth inhibition of Kluyveromyces marxianus.
Material adicional (1)
Abstract

A bioassay containing Kluyveromyces marxianus in microtiter plates was used to determine the inhibitory action of 28 antibiotics (aminoglycosides, beta-lactams, macrolides, quinolones, tetracyclines and sulfonamides) against this yeast in whey. For this purpose, the dose–response curve for each antibiotic was constructed using 16 replicates of 12 different concentrations of the antibiotic. The plates were incubated at 40°C until the negative samples exhibited their indicator (5–7h). Subsequently, the absorbances of the yeast cells in each plate were measured by the turbidimetric method (λ=600nm) and the logistic regression model was applied. The concentrations causing 10% (IC10) and 50% (IC50) of growth inhibition of the yeast were calculated. The results allowed to conclude that whey contaminated with cephalosporins, quinolones and tetracyclines at levels close to the Maximum Residue Limits inhibits the growth of K. marxianus. Therefore, previous inactivation treatments should be implemented in order to re-use this contaminated whey by fermentation with K. marxianus.

Keywords:
Kluyveromyces marxianus
Inhibition test
Antibiotic
Logistic model
Resumen

Se utilizó un bioensayo en placas de microtitulación que contenían Kluyveromyces marxianus para determinar la acción inhibitoria en suero de 28 antibióticos (incluyendo aminoglucósidos, betalactámicos, macrólidos, quinolonas, tetraciclinas y sulfonamidas) contra esta levadura. Para ello, se construyeron curvas dosis/respuesta utilizando 16 réplicas de 12 concentraciones diferentes de cada antibiótico. Las placas se incubaron a 40°C hasta el viraje del indicador de las muestras negativas (5-7h). Posteriormente, se midieron las absorbancias de las células de levadura en cada placa por el método turbidimétrico (λ=600nm), y se aplicó el modelo de regresión logística. Se calcularon las concentraciones que causan el 10% (IC10) y el 50% (IC50) de inhibición del crecimiento de la levadura. Los resultados permitieron concluir que el suero contaminado con cefalosporinas, quinolonas y tetraciclinas en niveles cercanos a los límites máximos de residuos inhiben el crecimiento de K. marxianus. Por lo tanto, deberían implementarse tratamientos previos de inactivación para reutilizar sueros contaminados por fermentación con K. marxianus.

Palabras clave:
Kluyveromyces marxianus
Test de inhibición
Antibiótico
Modelo logístico
Texto completo
Introduction

Antibiotics are widely used to treat different diseases of dairy cattle45. Consequently, some antibiotic molecules can be eliminated in feces, urine and milk17.

Whey, the by-product of the dairy industry obtained during cheese making, may contain residues of antibiotics such as penicillin22, amoxicillin and ampicillin19, erythromycin and oxytetracyclines6,22,45, cefquinome and ceftiofur19, ciprofloxacin31 and tetracyclines1.

Among the various industrial uses of whey, it is important to highlight the production of different products24, such as biofuels7,15, bioethanol3,12,35,37,39–41, enzymes5,32, higher alcohols with antibacterial–antifungal properties2,10,11,33, beverages18,20,26,38 and biomass9,30,50,51, among others.

It should be noted that many of these industrial whey applications use yeasts, preferably Kluyveromyces marxianus, due to their ability to ferment lactose4,14,21,28,34,35,40,48. However, residues of antibiotics in whey at concentrations close to the Maximum Residue Limits (MRLs) established by the legislation8,16 could inhibit the fermentative processes of K. marxianus.

Therefore, the objective of the present work was to analyze the inhibitory effect of antibiotics on the growth of K. marxianus through a simple bioassay in microtiter plates.

Materials and methods

A yeast inhibition bioassay in microtiter plates was developed according to the following stages:

  • 1.

    Yeast: K. marxianus (ATCC 8554) was obtained from the strain collection of the Departamento de Microbiología of the Facultad de Ingeniería Química of the Universidad Nacional del Litoral, Santa Fe, Argentina.

Culture medium consisting of 5g/l yeast extract (Merck Millipore, USA), 30g/l casein peptone (Biokar Diagnostics, France) and 40g/l lactose (Merck Millipore, USA) was adjusted to pH=7.0 and sterilized at 121°C for 15min. Then, the medium was inoculated with K. marxianus and incubated at 40°C for 24h, in order to obtain cells in exponential phase (OD=0.5, λ=600nm).

  • 2.

    Culture medium with yeast: A semisynthetic matrix made up of antibiotic-free whey deproteinized by heat treatment at 120°C for 20min was used. Then, the culture medium was fortified under sterile conditions with 0.5% yeast extract (Merck Millipore, USA), 3% casein peptone (Biokar Diagnostics, France) and lactose (Merck Millipore, USA) in order to obtain a matrix containing 0.9% protein and 5.0% lactose. Furthermore, the pH was adjusted to 7.0 with NaOH 0.1M. Subsequently, 20% suspension of K. marxianus (ATCC 8554) in exponential phase and 50mg/l of bromothymol blue were added. It should be noted that, the acid–base indicator is used to visualize the endpoint of the incubation of K. marxianus.

  • 3.

    Antibiotic-fortified solutions in culture medium: Aqueous solutions (1000mg/l) were prepared for the following 27 antibiotics (Sigma Chemical Co., St. Louis, MO, USA): 3 aminoglycosides, 10 beta-lactams, 3 macrolides, 4 quinolones, 3 tetracyclines and 4 sulfonamides. For each antibiotic, 12 concentrations were prepared (Table 1S online Supplementary File) using the culture medium described in “Materials and methods” section.

  • 4.

    Yeast inhibition bioassay: Two microtiter plates were used for each antibiotic and 16 replicates of the 12 solutions in whey according to “Materials and methods” section were tested. In each well of the microtiter plates, 200μl of antibiotic-fortified medium solution was added using an electronic dispenser (Eppendorf Research® Pro, Hamburg, Germany). Subsequently, the plates were incubated at 40°C until the negative controls turned from blue to yellow. Previous studies revealed that an adequate incubation time is between 5 and 7h, since prolonging this time (e.g. 9h) produces no modifications in the bioassay response.

Subsequently, the microtiter plates were measured at 600nm using a Biotek EL800 reader (BioTek Instruments Inc., Winooski, Vermont, USA) and the Relative Absorbances (RA) in each bioassay were calculated.

The RA were analyzed using the Maximum Likelihood estimation method contained in the Logistic Regression procedure46. The following logistic regression model (logit) was used:

where β0 and β1 are the parameters calculated with the logistic model; [ATB]i is the antibiotic concentration; and ɛij is the model error.

For each antibiotic, IC10 and IC50 were calculated as the antibiotic concentrations that reduce 10% and 50% of RA44.

Results

The application of the logistic regression model was adequate because the high concordance coefficients were between 82.3% for ampicillin and 97.3% for ciprofloxacin, as observed in Table 1. The values of coefficient β1 represent the decrease in growth of K. marxianus due to the increase in antibiotic concentration. Thus, higher values of this parameter indicate greater inhibition by the antibiotic. The β1 parameters for cephalosporins (from β1, cefadroxil=−0.0294 to β1, cefuroxime=−0.0108), quinolones (from β1, ciprofloxacin=−0.0391 to β1, marbofloxacin=−0.0120) and tetracyclines (from β1, oxytetracyclin=−0.0508 to β1, tetracyclin=−0.0359) were higher than those for the other antibiotics studied (Table 1). To visualize the growth inhibition of K. marxianus due to the concentrations of cephalosporins, tetracyclines and quinolones, dose–response curves were constructed (Fig. 1).

Table 1.

Logistic equations that represent the effect of antibiotic concentrations on the growth inhibition of Kluyveromyces marxianus.

Antibiotics  Logit [P]=β0+β1 [ATB]IC50  MRL 
  β0  β1  C   
Beta-lactams
Penicillin G  2.0971  −0.0064  86.2  330 
Amoxicillin  2.4839  −0.0009  94.1  2680 
Ampicillin  1.6418  −0.0006  82.3  2700 
Cloxacillin  1.6090  −0.0014  86.7  1200  30 
Oxacillin  2.3871  −0.0014  90.6  1700  30 
Cefadroxil  2.4659  −0.0294  91.6  84  100 
Cephalexin  2.8972  −0.0284  89.8  100  – 
Cefoperazone  2.8371  −0.0156  93.0  180  50 
Cefuroxime  1.9394  −0.0108  83.5  175  – 
Ceftiofur®  3.6675  −0.0179  90.9  205  100 
Aminoglycosides
Streptomycin  3.5496  −0.0031  92.9  1140  – 
Kanamycin  4.3517  −0.00036  95.4  12000  150 
Neomycin  3.0491  −0.0025  89.4  1200  1500 
Macrolides
Erythromycin  2.1208  −0.00005  86.3  41000  – 
Tilcomisin  1.9330  −0.00023  86.6  8200  50 
Tylosin  3.3525  −0.0029  95.3  1160  50 
Tetracyclines
Chlortetracycline  2.3751  −0.0410  89.6  57  100 
Oxytetracycline  3.1727  −0.0508  97.1  62  100 
Tetracycline  3.2406  −0.0359  95.3  90  100 
Quinolones
Ciprofloxacin  6.9824  −0.0391  97.2  178  100 
Enrofloxacin  2.1906  −0.0167  93.2  130  100 
Marbofloxacin  1.7982  −0.0120  85.5  130  75 
Norfloxacin  3.6517  −0.0177  96.1  200  100 

Logit [P]: logistic model; β0, β1: parameters estimated by the model; ATB: antibiotic; C%: concordance percentage; IC50: concentrations producing 50% of inhibition of yeast growth (μg/l); MRL: Maximum Residue Limits (μg/l).

Figure 1.

Effect of the cephalosporin, quinolone and tetracycline concentrations on the growth of Kluyveromyces marxianus.

(0.35MB).

IC50 (μg/l) values in whey were close to those of MRLs (μg/l) in milk for cephalexin (100 vs 100), cefoperazone (180 vs 50), ceftiofur (205 vs 100), chlortetracycline (57 vs 100) oxytetracycline (62 vs 100), tetracycline (90 vs 100), ciprofloxacin (178 vs 100), enrofloxacin (130 vs 100), marbofloxacin (130 vs 75) and norfloxacin (130 vs 100). In contrast, IC50 values of penicillins, aminoglycosides, macrolides and sulfonamides, except neomycin (Table 1), were very high compared to their MRLs (>30 MRLs).

Discussion

With respect to cephalosporins, Hamilton-Miller23 observed growth inhibition of some pathogenic yeasts and filamentous fungi when analyzing semisynthetic cephalosporins that possess an N-benzyldithiocarbamate side group. Furthermore, an in vitro study to determine the inhibition of yeasts reveals the use of high concentrations (16000μg/ml) of a combination of cefoperazone sodium, sulbactam sodium, and cefradine in proportions of 2:2:329.

In the case of fungal species, Sanyal et al.42 reported that the degradation products of cephalosporins inhibit the growth of Trichophyton mentagrophytes (dermatophytes) and Macrophomina phaseolina (a plant pathogen), but are not effective against Candida albicans (an opportunistic yeast) or Aspergillus niger (a saprophyte).

Therefore, the differences in sensitivity observed between cephalosporins and penicillins (Table 1) in this study could be attributed to the production of penicillinase by K. marxianus, which reduces the effectiveness of penicillins, thus enabling normal yeast fermentation.

With regard to quinolones, growth inhibition of K. marxianus by these antibiotics (Fig. 1) can be attributed to their effect on the topoisomerase enzyme that participates in the relaxation of the DNA double helix. Zhang et al.52 described genotoxic effects against non-target species due to the binding of quinolones to topoisomerase. Similarly, Stergiopoulou et al.47 reported growth inhibition of Candida spp. by fluoroquinolones.

Moreover, in an in vivo study involving fluoroquinolones, Dalhoff13 emphasizes the effectiveness of topically administered moxifloxacin and gatifloxacin in treating infections caused by Candida spp. Additionally, in an in vitro study using a paper disk diffusion test, the author observes that gatifloxacin and sparfloxacin inhibit Trichophyton rubrum, Fusarium solani and C. albicans.

The in vitro study involving Fusarium spp. isolates, conducted by Kawakami et al.27, reported inhibitory effects at high concentrations of fluoroquinolones: 750mg/l of gatifloxacin, 312.5mg/l of levofloxacin, and 1250mg/l of moxifloxacin.

Finally, regarding tetracyclines, their effect on K. marxianus growth (Fig. 1) can be attributed to the inhibition of yeast protein synthesis, since these substances interfere with the binding of aa-tRNA to the 30S ribosomal subunit49. In this regard, Oriel and Waterworth36 highlighted that minocycline can inhibit the growth of the yeast C. albicans, while Schwartz et al.43. suggested that the combined effect of polymyxin B and tetracycline can inhibit the growth of C. albicans and Saccharomyces cerevisiae. Similarly, Hooper et al.25. observed synergism in the inhibition of Candida spp. when using combinations of doxycycline with fluconazole and tigecycline with fluconazole.

Conclusion

In summary, a simple, fast (6h) and low-cost bioassay was developed to analyze the inhibitory effect of antibiotics on the growth of K. marxianus. Results showed that whey contaminated with cephalosporin, quinolone or tetracycline residues at levels close to the MRLs in milk inhibits K. marxianus growth.

Therefore, whey contaminated with antibiotics at levels accepted by the legislation must be treated before fermentation with K. marxianus. Additionally, bioassays utilizing this methodology could be developed to determine the in vitro inhibition of pathogenic yeasts and fungi, aiming to reduce response times (5–7h) compared to the current radial diffusion methods in Petri dishes. These future bioassays in microtiter plates could provide a rapid response (to antibiotics and/or antifungals, including their interactions) for patients with infections caused by fungi and/or yeast.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Acknowledgements

This research work was carried out as part of the projects PICT 455-2012 and PICT 2017-2841 of the Agencia Nacional de Promoción Científica y Tecnológica of Argentina (ANPCyT). We thank María Victoria Gonzalez Eusevi for revising the English of the manuscript.

Appendix B
Supplementary data

The following are the supplementary data to this article:

References
[1]
V.O. Adetunji.
Effects of processing on antibiotic residues (streptomycin, penicillin-G and tetracycline) in soft cheese and yoghurt processing lines.
Pak J Nutr, 10 (2011), pp. 792-795
[2]
M. Alonso-Vargas, A. Téllez-Jurado, C.A. Gómez-Aldapa, M.D.R. Ramírez-Vargas, L. Conde-Báez, J. Castro-Rosas, A. Cadena-Ramírez.
Optimization of 2-phenylethanol production from sweet whey fermentation using Kluyveromyces marxianus.
Fermentation, 8 (2022), pp. 39
[3]
A. Beniwal, P. Saini, A. Kokkiligadda, S. Vij.
Use of silicon dioxide nanoparticles for β-galactosidase immobilization and modulated ethanol production by co-immobilized K. marxianus and S. cerevisiae in deproteinized cheese whey.
LWT, 87 (2018), pp. 553-561
[4]
D. Bipasha, D. Monami, B. Sangita, B. Chiranjib.
Ethanol production from deproteinized cheese whey powder in a batch fermentation process: optimization of process and kinetic modelling.
Desalin Water Treat, 64 (2017), pp. 198-206
[5]
A. Bosso, A.C.I. Setti, A.B. Tomal, S. Guemra, L.R.I. Morioka, H. Suguimoto.
Substrate consumption and beta-galactosidase production by Saccharomyces fragilis IZ 275 grown in cheese whey as a function of cell growth rate.
Biocatal Agric Biotechnol, 21 (2019), pp. 101335
[6]
R. Cabizza, N. Rubattu, S. Salis, M. Pes, R. Comunian, A. Paba, M. Addis, M. Teswta, P. Urgeghe.
Transfer of oxytetracycline from ovine spiked milk to whey and cheese.
Int Dairy J, 70 (2017), pp. 12-17
[7]
E. Carota, S. Crognale, A. D’Annibale, A.M. Gallo, S.R. Stazi, M. Petruccioli.
A sustainable use of Ricotta Cheese Whey for microbial biodiesel production.
Sci Total Environ, 584 (2017), pp. 554-560
[8]
Codex Alimentarius.
Codex committee on residues of veterinary drugs in foods. 9th session of the 30 August–3 September 2010. Discussion paper on methods of analysis for residues of veterinary drugs in foods (CX/RVDF 10/19/6),
[9]
F. Coelho Sampaio, T.L. da Conceição Saraiva, G. Dumont de Lima e Silva, J. Teles de Faria, C. Grijó Pitangui, B. Aliakbarian, P. Perego, A. Converti.
Batch growth of Kluyveromyces lactis cells from deproteinized whey: response surface methodology versus artificial neural network–genetic algorithm approach.
Biochem Eng J, 109 (2016), pp. 305-311
[10]
L. Conde Báez, J. Castro Rosas, J.R. Villagómez Ibarra, I. Palma Quiroz, J.B. Páez Lerma, C.A. Gómez Aldapa.
Production of benzyl carbonyl (rose aroma) from whey and its effect on pollutant load removal.
Environ Dev Sustain, 21 (2017), pp. 609-619
[11]
L. Conde-Báez, A. López-Molina, C. Gómez-Aldapa, C. Pineda-Muñoz, C. Conde-Mejía.
Economic projection of 2-phenylethanol production from whey.
Food Bioprod Process, 115 (2019), pp. 10-16
[12]
M. Cunha, A. Romaní, M. Carvalho, L. Domingues.
Boosting bioethanol production from Eucalyptus wood by whey incorporation.
Bioresour Technol, 250 (2018), pp. 256-264
[13]
A. Dalhoff.
Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: a puzzling paradox or a logical consequence of their mode of action?.
Eur J Clin Microbiol Infect Dis, 34 (2015), pp. 661-668
[14]
L. Díaz-Vergara, C.M. Pereyra, M. Montenegro, G.A. Pena, C.A. Aminahuel, L.R. Cavagliei.
Encapsulated whey–native yeast Kluyveromyces marxianus as a feed additive for animal production.
Food Addit Contam Part A, 34 (2017), pp. 750-759
[15]
H. Escalante, L. Castro, M.P. Amaya, L. Jaimes, J. Jaimes-Estevez.
Anaerobic digestion of cheese whey: energetic and nutritional potential for the dairy sector in developing countries.
Waste Manag, 71 (2018), pp. 711-718
[16]
European Union.
Regulation (EU) N° 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin.
Off J Eur Union, 15 (2010), pp. 1-72
[17]
Food and Drug Administration (FDA).
Milk drug residue sampling survey.
(2015),
[18]
M.A. Gantumur, N. Sukhbaatar, A. Qayum, A. Bilawal, B. Tsembeltsogt, K.C. Oh, Z. Jiang, J. Hou.
Characterization of major volatile compounds in whey spirits produced by different distillation stages of fermented lactose-supplemented whey.
J Dairy Sci, 105 (2022), pp. 83-96
[19]
J. Giraldo, R.L. Althaus, M.C. Beltrán, M.P. Molina.
Antimicrobial activity in cheese whey as an indicator of antibiotic drug transfer from goat milk.
Int Dairy J, 69 (2017), pp. 40-44
[20]
O. Guneser, Y. Karagul-Yuceer, A. Wilkowska, D. Kregiel.
Volatile metabolites produced from agro-industrial wastes by Na-alginate entrapped Kluyveromyces marxianus.
Braz J Microbiol, 47 (2016), pp. 965-972
[21]
A. Gupta, J.P. Verma.
Sustainable bio-ethanol production from agro-residues: a review.
Renew Sust Energ Rev, 41 (2015), pp. 550-567
[22]
H. Hakk, N.W. Shappell, S. Lupton, W. Shelver, W. Fanaselle, D. Oryang, C. Yuen Yeung, K. Hoelzer, Y. Ma, D. Gaalswyk, R. Pouillot, J. Van Doren.
Distribution of animal drugs between skim milk and milk fat fractions in spiked whole milk: understanding the potential impact on commercial milk products.
J Agric Food Chem, 64 (2016), pp. 326-335
[23]
J.M.T. Hamilton-Miller.
Beta-lactams: variations on a chemical theme, with some surprising biological results.
J Antimicrob Chemother, 44 (1999), pp. 729-734
[24]
M. Hernández-Cruz, G.M. Vázquez-Cuevas, J. Castro-Rosas, M. Hernández-Juárez, C.A. Gómez-Aldapa.
Kluyveromyces marxianus, sus aplicaciones en lactosuero.
Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 10 (2023), pp. 1-9
[25]
R.W. Hooper, D.S. Ashcraft, G.A. Pankey.
In vitro synergy with fluconazole plus doxycycline or tigecycline against clinical Candida glabrata isolates.
Med Mycol, 57 (2019), pp. 122-126
[26]
S. Kadyan, H.M. Rashmi, D. Pradhan, A. Kumari, A. Chaudhari, G.K. Deshwal.
Effect of lactic acid bacteria and yeast fermentation on antimicrobial, antioxidative and metabolomic profile of naturally carbonated probiotic whey drink.
LWT, 142 (2021), pp. 111059
[27]
H. Kawakami, H. Inuzuka, N. Hori, N. Takahashi, K. Ishida, K. Mochizuki, K. Ohkusu, Y. Muraosa, A. Watanabe, K. Kamei.
Inhibitory effects of antimicrobial agents against Fusarium species.
Med Mycol, 53 (2015), pp. 603-611
[28]
L. Lavari, R. Páez, A. Cuatrin, J. Reinheimer, G. Vinderola.
Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.
J Dairy Res, 81 (2014), pp. 267-274
[29]
P. Li, W.G. Wang, Y.J. Cui, Y.L. Zhao, Y.N. Gu, T.T. Meng, P. Zhang, J.J. Ding, K. Jia, Y.D. Liu.
Preparation of a novel complex antimicrobial agent and its antimicrobial activity in vitro.
Adv Mater Res, 550 (2012), pp. 1030-1038
[30]
J. Lukjanenko, K. Kovtuna, M. Grube, A. Vigants.
Enhancement of protein content in (“Kluyveromyces marxianus”) biomass produced on cheese whey lactose.
J Biotechnol, 208 (2015), pp. S76
[31]
S.J. Lupton, N.W. Shappell, W.L. Shelver, H. Hakk.
Distribution of spiked drugs between milk fat, skim milk, whey curd, and milk protein fractions: expansion of partitioning models.
J Agric Food Chem, 66 (2017), pp. 306-314
[32]
N.A.P. Maguire, T. Kuhmann, D. Gerlach, R. Fan, P. Czermak.
Statistical mixture designs for media development with agro-industrial residues – supporting the circular bioeconomy.
EFB Bioecon J, 2 (2022), pp. 100023
[33]
O. Martínez-Avila, A. Sánchez, X. Font, R. Barrena.
Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: current state and perspectives.
Appl Microbiol Biotechnol, 102 (2018), pp. 9991-10004
[34]
J. Mounier, M. Coton.
Yeast and molds – Kluyveromyces spp..
Encyclopedia of dairy sciences, (2022), pp. 569-574
[35]
C.S. Murari, W.R. Machado, G.L. Schuina, V.L. Del Bianchi.
Optimization of bioethanol production from cheese whey using Kluyveromyces marxianus URM 7404.
Biocatal Agric Biotechnol, 20 (2019), pp. 101182
[36]
J.D. Oriel, P.M. Waterworth.
Effects of minocycline and tetracycline on the vaginal yeast flora.
J Clinic Pathol, 28 (1975), pp. 403-406
[37]
Z. Qiu, R. Jiang.
Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7.
Biotechnol Biofuels, 10 (2017), pp. 1-13
[38]
D. Risner, A. Shayevitz, K. Haapala, L. Meunier-Goddik, P. Hughes.
Fermentation and distillation of cheese whey: carbon dioxide-equivalent emissions and water use in the production of whey spirits and white whiskey.
J Dairy Sci, 101 (2018), pp. 2963-2973
[39]
B. Rodrigues, M.E. Lima-Costa, A. Constantino, S. Raposo, C. Felizardo, D. Goncalves, T. Fernandes, L. Dionísio, J.M. Peinado.
Growth kinetics and physiological behavior of co-cultures of Saccharomyces cerevisiae and Kluyveromyces lactis, fermenting carob sugars extracted with whey.
Enzyme Microb Technol, 92 (2016), pp. 41-48
[40]
P. Saini, A. Beniwal, A. Kokkiligadda, S. Vij.
Evolutionary adaptation of Kluyveromyces marxianus strain for efficient conversion of whey lactose to bioethanol.
Process Biochem, 62 (2017), pp. 69-79
[41]
F.C. Sampaio, J.T. de Faria, M.F. da Silva, R.P. de Souza Oliveira, A. Converti.
Cheese whey permeate fermentation by Kluyveromyces lactis: a combined approach to wastewater treatment and bioethanol production.
Environ Technol, 41 (2020), pp. 3210-3218
[42]
A.K. Sanyal, B. Chowdhury, A.B. Banerjee.
Generation of high antimycotic activity during degradation of β-lactam antibiotics.
Lett Appl Microbiol, 14 (1992), pp. 221-223
[43]
S.N. Schwartz, G. Medoff, G.S. Kobayashi, C.N. Kwan, D. Schlessinger.
Antifungal properties of polymyxin B and its potentiation of tetracycline as an antifungal agent.
Antimicrob Agents Chemother, 2 (1972), pp. 36-40
[44]
P. Senthilraja, K. Kathiresan.
In vitro cytotoxicity MTT assay in Vero HepG2 and MCF-7 cell lines study of marine yeast.
J Appl Pharm Sci, 5 (2015), pp. 80-84
[45]
N.W. Shappell, W. Shelver, S.J. Lupton, W. Fanaselle, J.M. Van Doren, H. Hakk.
Distribution of animal drugs among curd, whey, and milk protein fractions in spiked skim milk and whey.
J Agric Food Chem, 65 (2017), pp. 938-949
[46]
Statgraphics.
Statgraphics Centurion XV, version 15.2.06. Edicion Multilingüe.
StatPoint. Inc., (2007),
[47]
T. Stergiopoulou, J. Meletiadis, T. Sein, P. Papaioannidou, I. Tsiouris, E. Roilides, T.J. Walsh.
Comparative pharmacodynamic interaction analysis between ciprofloxacin, moxifloxacin and levofloxacin and antifungal agents against Candida albicans and Aspergillus fumigatus.
J Antimicrob Chemother, 63 (2009), pp. 343-348
[48]
G. Tabanelli, V. Verardo, F. Pasini, P. Cavina, R. Lanciotti, M. Caboni, F. Gardini, C. Montanari.
Survival of the functional yeast Kluyveromyces marxianus B0399 in fermented milk with added sorbic acid.
J Dairy Sci, 99 (2016), pp. 120-129
[49]
F.C. Tenover.
Mechanisms of antimicrobial resistance in bacteria.
[50]
D.E.G. Trigueros, M.L. Fiorese, A.D. Kroumov, C.L. Hinterholz, B.L. Nadai, G.M. Assunção.
Medium optimization and kinetics modeling for the fermentation of hydrolyzed cheese whey permeate as a substrate for Saccharomyces cerevisiae var. boulardii.
Biochem Eng J, 110 (2016), pp. 71-83
[51]
J.S. Yadav, S. Yan, C.M. Ajila, J. Bezawada, R.D. Tyagi, R.Y. Surampalli.
Food-grade single-cell protein production, characterization and ultrafiltration recovery of residual fermented whey proteins from whey.
Food Bioprod Process, 99 (2016), pp. 156-165
[52]
L. Zhang, K.V. Kumar, R.X. Geng, C.H. Zhou.
Design and biological evaluation of novel quinolone-based metronidazole derivatives as potent Cu2+ mediated DNA-targeting antibacterial agents.
Bioorg Med Chem Lett, 25 (2015), pp. 3699-3705
Copyright © 2024. Asociación Argentina de Microbiología
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos