metricas
covid
Buscar en
Revista Colombiana de Psiquiatría (English Edition)
Toda la web
Inicio Revista Colombiana de Psiquiatría (English Edition) Health-related quality of life and health literacy among adult primary care pati...
Información de la revista
Vol. 50. Núm. S1.
Páginas 22-29 (julio 2021)
Visitas
665
Vol. 50. Núm. S1.
Páginas 22-29 (julio 2021)
Acceso a texto completo
Health-related quality of life and health literacy among adult primary care patients with subsidized or contributive health insurance in Colombia
Calidad de vida relacionada a salud y alfabetización en salud en pacientes adultos en centros de atención primaria con afiliación al régimen subsidiado o contributivo en Colombia
Visitas
665
Shea M. Lemleya,
Autor para correspondencia
smlemley@gmail.com

Corresponding author.
, Sergio Castro-Diazb, Leonardo Cubillosa,c, Fernando Suárez-Obandob, William C. Torreya,c, José Miguel Uribe-Restrepod, Makeda Williamse, Lisa A. Marscha,c, Carlos Gómez-Restrepob,d,f
a Center for Technology and Behavioral Health, Geisel School of Medicine at Dartmouth, New Hampshire, United States
b Departamento de Epidemiología Clínica y Bioestadística, Pontificia Universidad Javeriana, Bogotá, Colombia
c Department of Psychiatry, Geisel School of Medicine at Dartmouth, New Hampshire, United States
d Departamento de Psiquiatría y Salud Mental, Pontificia Universidad Javeriana, Colombia
e Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
f Hospital Universitario San Ignacio, Bogotá, Colombia
Este artículo ha recibido
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Tablas (4)
Table 1. Participant characteristics.
Table 2. Regression model: HRQoL for the overall sample.
Table 3. Regression model: HRQoL for the contributive system.
Table 4. Regression model: HRQoL for the subsidized system.
Mostrar másMostrar menos
Suplemento especial
Este artículo forma parte de:
Vol. 50. Núm S1
Más datos
Abstract
Context

Colombia passed Law 100 in 1993 with the goal of providing universal health care coverage, and by 2013, over 96% of the Colombian population had health insurance coverage. However, little is known about how health-related quality of life (HRQoL) and health literacy are related among those with the two most common types of health insurance coverage: subsidized (those with lower incomes) and contributory (those with higher incomes) coverage.

Objectives and methods

In the current exploratory investigation, data from adults visiting six primary care clinics in Colombia were analysed to examine the relationship between HRQoL (assessed as problems with mobility, self-care, completing usual activities, pain/discomfort, and anxiety/depression), demographics, the two health insurance types, and health literacy. Analyses also assessed whether, within insurance types, health literacy was related to HRQoL.

Results

Results showed that those with contributory health insurance coverage had greater health literacy than those with subsidized coverage, and this was accounted for by differences in education and socioeconomic status. HRQoL did not differ by insurance type. Although lower health literacy was related to worse HRQoL in the overall sample, in subgroup analyses lower health literacy significantly related to worse HRQoL only among those with subsidized health insurance coverage.

Conclusion

Targeting skills which contribute to health literacy, such as interpreting medical information or filling out forms, may improve HRQoL, particularly in those with subsidized insurance coverage.

Keywords:
Quality of life
Health literacy
Primary care
Resumen
Contexto

Colombia emitió la Ley 100 en 1993 con el objetivo de proveer un cubrimiento de salud para toda la población, y para el año 2013, más del 96% de la población colombiana tenía cubrimiento en salud. No obstante, es poca la evidencia sobre como la calidad de vida relacionada con la salud (CVRS) y la alfabetización en salud se relacionan con la vinculación de las personas a los dos regímenes más predominantes en el sistema de salud colombiano: el régimen subsidiado (para personas con bajos ingresos) y el régimen contributivo (para personas con mayores ingresos).

Objetivos y métodos

En esta investigación, se analizaron datos de adultos que acudieron a seis centros de atención primaria en salud en Colombia con el fin de determinar la relación entre CVRS (evaluada a través de componentes como problemas de movilidad, autocuidado, realización de actividades usuales, dolor/disconfort y ansiedad/depresión), factores sociodemográficos, tipo de afiliación al régimen de salud y alfabetización en salud.

Resultados

Los resultados mostraron que las personas afiliadas al régimen contributivo tenían mayor alfabetización en salud que aquellas afiliadas al régimen subsidiado, lo cual se puede explicar por diferencias a nivel educativo y estatus socioeconómico. Para CVRS no hubo diferencias en cuanto a tipo de régimen en salud. Aunque una menor alfabetización en salud se vio relacionada con peor CVRS en la muestra general, en análisis de subgrupos solo se mantuvo esta tendencia en el grupo de personas con régimen de salud subsidiado.

Conclusiones

El enfoque en habilidades que determinan parte de la alfabetización en salud, como interpretación de información médica o llenar cuestionarios, puede mejorar la CVRS, particularmente en las personas afiliadas al régimen subsidiado.

Palabras clave:
Calidad de vida
Alfabetización en salud
Atención primaria
Texto completo
Introduction

Health-related quality of life (HRQoL), a person’s perceived level of health and the extent to which physical and mental health are compromised in daily life,1 has been promoted as a key outcome for evaluating and informing doctor-patient relationships, medical treatments, and health care policy by the World Health Organization’s (WHO).2 Despite the relevance of HRQoL to health care and health systems, much of what is known about HRQoL comes from research in high income countries (HICs; e.g.3), and there is relatively little research evaluating HRQoL among people in low- and middle-income countries (LMICs).4–6 In LMICs, demographic and socioeconomic variables are also associated with HRQoL. HRQoL tends to be worse for those with chronic disease, disability, or greater BMI.7–9 Employment,9,10 higher income,7–9 and greater educational attainment7–10 are associated with better HRQoL, whereas being female7 or of higher age7–9,11 are associated with worse HRQoL. In addition, although health systems vary across LMICs,12 preliminary research suggests that having health insurance is associated with better HRQoL.8,10

Colombia has made strides towards improving the health of its population through changes to its health insurance system, but few studies have evaluated differences in HRQoL based on this insurance system. Colombia passed Law 100 in 199313 with the aim of providing universal health insurance coverage for its citizens. By 2013, 96% of the population had health insurance, most through either the subsidized or contributive system.14,15 More than half of Colombians are covered by the subsidized system, which insures the unemployed, poor, or informally employed.14 By contrast, the contributive system provides health insurance coverage to those with formal employment or the capacity to pay. The contributive system is typically financed by the employee and their employer through payroll contributions, whereas insurance in the subsidized system is funded mostly through general taxation.14 Regardless of insurance system, all Colombians are entitled to the same comprehensive care package.16 This funding structure serves a redistributive function and overcomes financial barriers to health care. Relative to healthcare access before Law 100, this insurance system has improved health care utilization, including ambulatory medical services, in-patient hospital services, and medication consumption, although those in the contributive system still have greater access over those in the subsidized system.17,18

Recent research has evaluated HRQoL in Colombia, replicating findings that lower HRQoL is associated with female sex,19–21 higher age19,20 and having a chronic disease.22 Although Colombia is currently grappling with marked income inequality,23 income has been inconsistently related to HRQoL among Colombians.21 Such income inequality may also be a proxy for education inequality, and lower educational attainment has been associated with lower HRQoL among Colombians.24 To our knowledge, the only study of health insurance and HRQoL in Colombia found that among adults in Barranquilla, a city located on the north-western coast of Colombia, those with subsidized insurance reported fair or poor health more often than those with contributory insurance.19

Other variables impact HRQoL in LIMCs.25–27 Health literacy—the set of skills “needed to gain access to, understand and use information in ways which promote and maintain good health”28—has been associated with worse health outcomes, such as more hospitalizations, less utilization of preventative services, and greater use of emergency care.29 Further, better HRQoL is associated with better health literacy among patients with chronic diseases,27 whereas worse HRQoL is associated with low health literacy among general/healthy samples,25,26 though some research suggests this effect may be tempered by educational attainment.30 Health literacy is influenced by education and socioeconomic status (SES), but health literacy has also been shown to mediate the relation between SES and health outcomes and quality of life.31 Limited research has evaluated health literacy, health insurance, and HRQoL, but findings from Ghana show that health insurance coverage is positively associated with HRQoL only for those with high health literacy.26 To our knowledge, no studies have evaluated the impact of health literacy on HRQoL in Colombia or evaluated whether health literacy differs by type of insurance.

The goal of this study was to examine the effects of health insurance and health literacy on HRQoL in Colombia. This study evaluated HRQoL and health literacy among adults visiting one of six primary care clinics in Colombia. Relations between HRQoL, demographic variables, and health literacy were examined overall and separately for subgroups split by insurance type.

MethodProcedure

This study was part of formative work for a project on “Scaling up Science-based Mental Health Interventions in Latin America” (DIADA project: Detección y atención integrada de la depresión y uso de alcohol en atención primaria). The DIADA project is developing and evaluating a system for embedding mental health services in primary care in Latin America. All study procedures were approved by the Institutional Review Boards of Javeriana University and Dartmouth College. Participants provided informed consent and then completed a survey programmed in REDCap that was self-administered on a tablet in the waiting room of the clinic where they were recruited.32 Use of the REDCap application permitted researchers to confidentially collect data offline in areas with intermittent internet access, but data were uploaded daily.

Participants

Participants were 1580 adult patients (≥18 years of age) recruited from the waiting rooms of six primary care clinics in Colombia for a survey on health and technology use (see Ref. 33 for more details). To recruit a more representative sample, public and private clinics served as recruitment sites, and the clinics were located in urban, suburban, or rural settings:

  • Clinic 1 was a private ambulatory health center in the capital and largest city, Bogotá (population of approximately 9 million). Clinic 1 provided patient-centered primary care within a family-medicine framework for primarily urban patients.

  • Clinic 2 was a public clinic in a small town (population of approximately 11,000) that offered ambulatory services (i.e., outpatient, emergency care, and ambulance transportation) for approximately 14,000 people, 47% of whom live in rural areas.

  • Clinic 3 was a public primary care center serving urban, suburban, and rural populations in a moderate-sized city (population of approximately 110,000).

  • Clinic 4 was a public hospital offering specialized psychiatric services for patients from its small town (population of approximately 17,000) and surrounding rural areas.

  • Clinic 5 was a public primary care center located in a small town (population of approximately 11,000). Clinic 5 provided primary care and ambulatory, emergency, and short stay hospitalization services for inhabitants of the town and surrounding rural areas.

  • Clinic 6 was a public primary care center in a small city (population of approximately 47,000). Clinic 6 served patients from the city and surrounding rural areas.

Only those (n = 1,481, 93.7%) who provided complete data and reported health insurance under either the contributive (n = 615) or subsidized (n = 866) systems were included in the current analyses. A total of 95 participants reported other types of health insurance, one participant did not report socioeconomic strata, and three participants did not complete either the HRQoL or health literacy measures.

Measures

The survey included items assessing demographics (e.g., age, sex, education, socioeconomic strata, health insurance type), technology use (not reported; see Ref. 33), HRQoL, and health literacy.

HRQoL

Participants completed the EQ-5D-3L,34 an assessment of HRQoL validated in South American but not specifically in Colombia. Participants rated their health today across five domains: mobility, self-care, daily activities, pain, anxiety and depression. For each domain, participants could endorse no problems, moderate problems, or severe problems. The ratings across domains were combined into five-digit profiles reflecting individuals’ health states. For analysis, these profiles were assigned overall index scores based on regional preference weights for the health state profiles derived from visual analog scale ratings of health value collected in Argentina.35 Ratings for reporting problems within each domain were dichotomized as either no problems or some problems (i.e., ratings of moderate and severe problems were combined).

Health literacy

Health literacy was evaluated with a three-item assessment validated in Spanish but not specifically with a Colombian population.36 Participants responded to three questions using a five-point Likert scale: (1) "How confident are you filling out medical forms?"; (2) "How often do you have problems learning about your medical condition because of difficulty understanding written information?"; (3) "How often do you have someone help you read hospital materials?" The confidence with forms question was scored from 1 = Extremely confident to 5 = Not at all confident. The remaining two questions were scored such that 1 = Never to 5 = Always. Responses were summed to calculate a score ranging from 3 to 15 with higher scores indicating lower health literacy.

Analysis

Demographic characteristics, health literacy, and HRQoL were compared for those with contributive relative to subsidized insurance coverage using t-tests for interval data and chi-square tests for categorical data. Additionally, to evaluate differences in health literacy after accounting for education and SES, an ANCOVA was conducted comparing health literacy between those with subsidized and contributive health insurance with education and socioeconomic strata entered as covariates.

A hierarchical regression model was developed to evaluate the relative contribution of demographic variables and health literacy to HRQoL for the overall sample. In the first step, sex, age, ethnicity (coded as mestizo relative to other race/ethnicity), marital status (coded as whether participants were married/cohabitating or not), employment status (coded as full-time, part-time, and self-employed relative to not employed), education (coded as whether participants had completed at least secondary school relative to less education), low socioeconomic status (coded as rural, level 1, and level 2 relative to other socioeconomic strata), and insurance type were entered as predictors of HRQoL. In step 2, health literacy was added to evaluate its impact on HRQoL. To determine specific contributors to HRQoL by insurance type, hierarchical regression models were then developed separately for subgroups with subsidized insurance and contributive insurance. These models included sex, age, ethnicity, marital status, employment status, education, and low socioeconomic status in step 1 and then added health literacy in step 2.

Results

Participants’ median age was 45 years (IQR = 30, 61), and 53.1% (n = 786) were women (see Table 1). More than half the sample identified as mestizo (mixed European and Amerindian ancestry37; 58.3%, n = 863), while 20.6% identified as white (n = 305) and 21.1% identified as another racial/ethnic group (n = 313; e.g., Indigenous, Black/Afro-Colombian). More than half the sample (58.5%) had subsidized health insurance, while 41.5% had contributive health insurance. Participants with subsidized health insurance differed from those with contributive health insurance on clinic of recruitment, sex, employment status, socioeconomic strata, education, and ethnicity (all p < 0.04, see Table 1) but not marital status (p = 0.27).

Table 1.

Participant characteristics.

  Overall  Contributive  Subsidized   
  n = 1481  n = 615 (41.5%)  n = 866 (58.5%)   
  Mdn(IQRMdn(IQRMdn(IQRp 
Age  45 (30, 61)  43 (30, 58)  47 (31, 63)  <0.001 
Health literacy  7 (6, 9)  7 (5, 8)  8 (7, 11)  <0.001 
HRQoL - index  0.84 (0.70, 1.0)  0.84 (0.66, 1.0)  0.84 (0.72, 1.0)  0.76 
Clinic Sites  n (%)  n (%)  n (%)  p 
Clinic 1  458 (30.9)  457 (74.3)  1 (0.1)  <0.001
Clinic 2  260 (17.6)  20 (3.3)  240 (27.7) 
Clinic 3  249 (16.8)  52 (8.5)  197 (22.7) 
Clinic 4  171 (11.5)  31 (5)  140 (16.2) 
Clinic 5  176 (11.9)  16 (2.6)  160 (18.5) 
Clinic 6  167 (11.3)  39 (6.3)  128 (14.8) 
Sex         
Female  786 (53.1)  306 (49.8)  480 (55.4)  0.04
Male  695 (46.9)  309 (50.2)  386 (44.6) 
Marital status         
Single  468 (31.6)  197 (32.2)  271 (31.3)  0.27
Married/cohabitating  762 (51.5)  327 (52.9)  435 (50.2) 
Separated/divorced  192 (13.0)  71 (11.7)  121 (14.0) 
Widowed  59 (4.0)  20 (3.2)  39 (4.5) 
Employment status         
Full time  263 (17.8)  219 (35.6)  44 (5.1)  <0.001
Part time  109 (7.4)  21 (3.4)  88 (10.2) 
Self-employed  330 (22.3)  122 (19.8)  208 (24.0) 
Homemaker  337 (22.8)  77 (12.5)  260 (30.0) 
Student  111 (7.5)  58 (9.4)  53 (6.1) 
Unemployed/retired/disabled  331 (22.3)  118 (19.2)  213 (24.6) 
Socioeconomic strata*         
Rural area  237 (16.0)  9 (1.5)  228 (26.3)  <0.001
Level 1  476 (32.1)  32 (5.2)  444 (51.3) 
Level 2  344 (23.2)  171 (27.8)  173 (20) 
Level 3  304 (20.5)  285 (46.3)  19 (2.2) 
Level 4  98 (6.6)  96 (15.6)  2 (0.2) 
Level 5  15 (1.0)  15 (2.4)  0 (0) 
Level 6  7 (0.5)  7 (1.1)  0 (0) 
Education         
Less than complete elementary  271 (18.3)  26 (4.2)  245 (28.3)  <0.001
Completed elementary not secondary  426 (28.8)  89 (14.5)  337 (38.9) 
Completed secondary not tertiary  446 (30.1)  201 (32.7)  245 (28.3) 
Completed tertiary  338 (22.8)  299 (48.6)  39 (4.5) 
Ethnicity         
Mestizo  863 (58.3)  329 (53.5)  534 (61.7)  <0.001
White  305 (20.6)  171 (27.8)  134 (15.5) 
Other  313 (21.1)  115 (18.7)  198 (22.9) 

The median HRQoL index score (scored 0.0–1.0) for the sample was .84 (IQR = 0.70, 1.0), and HRQoL did not differ between those with contributive relative to subsidized health insurance coverage (p = 0.76). In the overall sample, 18% reported some or extreme problems with their mobility, 4.2% reported some or extreme problems with self-care, 14.8% reported some or extreme problems with daily activities, 41.3% reported some or extreme problems with pain, and 22.8% reported some or extreme problems with anxiety/depression. None of these categories of HRQoL differed between those with subsidized relative to contributive insurance (all p > 0.10). A t-test revealed that participants with subsidized health insurance had lower health literacy (p < 0.001), though this difference was no longer significant (p = 0.38) after education (p < 0.001) and socioeconomic strata were entered as covariates (p < 0.01).

Health quality, demographics, and health literacy

For the overall sample, the hierarchical multiple linear regression model revealed several significant associations with HRQoL in step 1 (F(8, 1472) = 12.08, p < 0.001, R2 = 0.06; see Table 2). Specifically, younger age and mestizo ethnicity were associated with higher HRQoL. Adding health literacy in step 2 significantly improved the model (F(1, 1471) = 15.54, p < 0.001, R2 = 0.07) but did not change any of the significant associations from step 1. Better health literacy was significantly associated with better HRQoL (p < 0.001).

Table 2.

Regression model: HRQoL for the overall sample.

  Step 1Step 2
  B  SE B  β  p  B  SE B  β  p 
Female  0.00  0.01  −0.01  0.78  −0.01  0.01  −0.01  0.63 
Age  0.00  0.00  −0.15  <0.001  0.00  0.00  −0.11  <0.001 
Mestizo  0.07  0.01  0.18  <0.001  0.07  0.01  0.17  <0.001 
Married/cohabitating  0.00  0.01  −0.01  0.81  0.00  0.01  −0.01  0.65 
Employed  0.02  0.01  0.05  0.07  0.02  0.01  0.04  0.15 
Complete secondary education  0.01  0.01  0.03  0.43  0.00  0.01  0.00  0.92 
Low socioeconomic status  0.00  0.02  0.01  0.77  0.01  0.02  0.03  0.41 
Contributive insurance  −0.01  0.01  −0.02  0.54  −0.01  0.01  −0.03  0.39 
Health literacya          −0.01  0.00  −0.13  <0.001 
R2  0.062***0.071***
F: R2 Change  F(8, 1472) = 12.08***F(1, 1471) = 15.54***

a: Higher health literacy scores indicate worse health literacy.

***

p < 0.001

Health quality, demographics, and health literacy by insurance type

For those with contributive health insurance, step 1 of the hierarchical regression model produced a significant model (F(7, 607) = 2.13, p = 0.04, R2 = 0.02; see Table 3) and significant associations with HRQoL. Identifying as mestizo relative to other ethnicities was associated with higher HRQoL. Adding health literacy in step 2 did not significantly improve the model (F(1, 606) = 2.98, p = 0.109, R2 = 0.03), though the overall model remained significant (p = 0.02). Health literacy was not significantly associated with HRQoL for those with contributive insurance (p = 0.09), and mestizo ethnicity remained significantly associated with higher HRQoL (p = 0.01).

Table 3.

Regression model: HRQoL for the contributive system.

  Step 1Step 2
  B  SE B  β  p  B  SE B  β  p 
Female  −0.01  0.02  −0.01  0.74  −0.01  0.02  −0.02  0.70 
Age  0.00  0.00  −0.08  0.06  0.00  0.00  −0.07  0.14 
Mestizo  0.04  0.02  0.10  0.02  0.04  0.02  0.10  0.01 
Married/cohabitating  0.01  0.02  0.01  0.74  0.00  0.02  0.01  0.80 
Employment  0.00  0.02  0.00  0.98  0.00  0.02  −0.01  0.85 
Complete secondary education  0.04  0.02  0.07  0.11  0.03  0.02  0.05  0.29 
Low socioeconomic status  0.02  0.02  0.04  0.37  0.02  0.02  0.05  0.25 
Health literacya          −0.01  0.02  −0.02  0.08 
R2  0.024*0.029*
F: R2 Change  F(7, 607) = 2.13F(1, 606) = 2.98

a: Higher health literacy scores indicate worse health literacy.

*

p < 0.05

For participants with subsidized insurance, the hierarchical regression model was significant in step 1 (F(7, 858) = 14.83, p < 0.001, R2 = 0.11; see Table 4). Significant associations with higher HRQoL in step 1 included younger age, being mestizo relative to other ethnicities, and being employed. Adding health literacy in step 2 significantly improved the model (F(1, 857) = 9.41, p < 0.01, R2 = 0.12), and health literacy was significantly associated with HRQoL (p < 0.01).

Table 4.

Regression model: HRQoL for the subsidized system.

  Step 1Step 2
  B  SE B  β  p  B  SE B  β  p 
Female  0.00  0.01  0.01  0.85  0.00  0.01  0.00  0.96 
Age  0.00  0.00  −0.21  <0.001  0.00  0.00  −0.15  <0.001 
Mestizo  0.09  0.01  0.23  <0.001  0.09  0.01  0.22  <0.001 
Married/cohabitating  −0.01  0.01  −0.02  0.48  −0.01  0.01  −0.03  0.41 
Employment  0.04  0.01  0.10  <0.01  0.03  0.01  0.08  0.02 
Complete secondary education  −0.01  0.01  −0.02  0.54  −0.02  0.02  −0.04  0.26 
Low socioeconomic status  −0.01  0.04  −0.01  0.77  0.00  0.04  0.00  0.90 
Health literacya          −0.01  0.00  −0.12  <0.01 
Model R2  0.108***0.118***
F: R2 Change  F(7, 858) = 14.83***F(1, 857) = 9.41**

a: Higher health literacy scores indicate worse health literacy.

**

p < 0.01

***

p < 0.001

Discussion

Worse health literacy was associated with worse HRQoL for the overall sample, which extends results from other LMICs (e.g., China, Ghana, and Uruguay26,27,30) to Colombia. Further, greater health literacy significantly impacted HRQoL after accounting for demographic variables. When examining associations separately for health insurance subgroups, worse health literacy was significantly associated with worse HRQoL only among those with subsidized health insurance coverage. Health literacy was lower in the subsidized insurance group, but this difference was no longer significant after adjusting for education and SES, suggesting that these variables more strongly accounted for the differences in health literacy. Findings from this study indicate that reducing barriers to accessing health information may be beneficial for improving HRQoL of primary care patients in Colombia. These data also suggest that future research might benefit from examining whether those with subsidized insurance benefit more than those with contributive insurance from interventions that target skills associated with accessing and using health information (i.e., learning about medical conditions, reading hospital materials, filling out forms). In HICs, modifications—such as presenting only essential health information—can improve health outcomes for individuals with low health literacy.38 Further, preliminary findings suggest health literacy interventions may result in HRQoL improvements among individuals with chronic diseases.39

Consistent with prior research, greater age was associated with lower HRQoL overall and in the subsidized insurance group.19,20,40 Further, individuals who identified as mestizo—the largest ethnic group in Colombia—reported greater HRQoL relative to other ethnic groups. To our knowledge, no studies have reported differences in HRQoL by ethnic group in Colombia. Unlike prior research, however, HRQoL in this sample did not differ by sex or insurance type. The findings from the current study may have differed from previous research because the sample was recruited from primary care rather than the population, so included only healthcare seekers. This sample also included more women and used a continuous, rather than categorical, measure of HRQoL,19,20 which also may have impacted findings.

Limitations of the current study could be addressed by future research. First, this study used a self-reported measure of health literacy that was validated in Spanish but has not been validated with a Colombian sample, which may limit its utility given potential regional differences in culture or dialect. Similarly, although the EQ-5D-3L has been used to measure HRQoL among Colombians,20 benchmarks for Colombia are not available for determining the index score so regional (Argentinian) utility values were used. Future research might validate these measures with a Colombian sample. The sample for the current study was recruited from primary care clinics that typically serve low-complexity conditions, though the specific clinical status of the patients was not known. Results from this population may lack generality to the broader Colombian population. Although HRQoL ratings in this sample were similar in level to those found among the broader population,20 future research could recruit a more representative sample. Finally, the insurance subgroups differed on most demographic variables. Several of these were entered into the regression models, but some variables (e.g., clinic) were not included in the models because they were imbalanced between insurance subgroups.

In conclusion, better health literacy was significantly associated with better HRQoL in a large sample of Colombian adults recruited from primary care clinics in Colombia. Although HRQoL did not differ for those with contributive versus subsidized insurance, better health literacy was associated with better HRQoL for those in the subsidized health insurance system. Future research is needed to examine whether interventions that address skills comprising health literacy related to accessing and using health information improve HRQoL in Colombians, particularly for those in the subsidized health insurance system. These results suggest that interventions addressing skills comprising health literacy related to navigating and accessing health information may be important for improving HRQoL, particularly for those in the subsidized health insurance system. Public policy or community health education efforts that target presenting health information in a more understandable fashion may also help attenuate differences in HRQoL associated with health literacy.

Funding

The investigation reported in this publication was financed by the National Institute of Mental Health (NIMH of the National Institutes of Health (NIH) via Grant# 1U19MH109988 (Multiple Principal Investigators: Lisa A. Marsch, PhD and Carlos Gómez-Restrepo, MD PhD). The content of this article is only the opinion of the authors and does not reflect the viewpoints of the NIH or the Government of the United States of America.

Conflicts of interest

Authors report not having any conflicts of interest. Dr. Lisa A. Marsch, one of the principal investigators on this project, is affiliated with the business that developed the mobile intervention platform that is being used in this research. This relationship is extensively managed by Dr. Marsch and her academic institution.

References
[1]
L. Scalone, R. Ciampichini, S. Fagiuoli, A. Gardini, F. Fusco, L. Gaeta, et al.
Comparing the performance of the standard EQ-5D 3L with the new version EQ-5D 5L in patients with chronic hepatic diseases.
Qual Life Res, 22 (2013), pp. 1707-1716
[2]
World Health Organization.
WHOQOL: Measuring quality of life.
(1997),
[3]
S.R. Dube, J. Liu, A.Z. Fan, M.I. Meltzer, W.W. Thompson.
Assessment of age-related differences in smoking status and health-related quality of life (HRQoL): findings from the 2016 Behavioral Risk Factor Surveillance System.
J Commun Psychol, 47 (2018), pp. 93-103
[4]
R. Power, C. Galea, M. Muhit, E. Heanoy, T. Karim, N. Badawi, et al.
What predicts the proxy-reported health-related quality of life of adolescents with cerebral palsy in Bangladesh?.
BMC Public Health, 20 (2020), pp. 18
[5]
R. Power, C. King, M. Muhit, E. Heanoy, T. Karim, N. Badawi, et al.
Health-related quality of life of children and adolescents with cerebral palsy in low- and middle-income countries: a systematic review.
Dev Med Child Neurol, 60 (2018), pp. 469-479
[6]
M.H. Livingston, P.L. Rosenbaum, D.J. Russell, R.J. Palisano.
Quality of life among adolescents with cerebral palsy: what does the literature tell us?.
Dev Med Child Neurol, 49 (2007), pp. 225-231
[7]
A.K. Karyani, A. Rashidian, S.E. Sefiddashti, A.A. Sari.
Self-reported health-related quality of life (HRQoL) and factors affecting HRQoL among individuals with health insurance in Iran.
Epidemiol Health, 38 (2016),
[8]
S. Rezaei, M. Hajizadeh, A. Kazemi, M. Khosravipour, F. Khosravi, S. Rezaeian.
Determinants of health-related quality of life in Iranian adults: evidence from a cross-sectional study.
Epidemiol Health, 39 (2017),
[9]
Y. Gu, H. Zhang, S.H. Ali, M. Huang, J. Wei, S. Gu, et al.
Social determinants of health-related quality of life among residents in Zhejiang and Qinghai, China.
Int J Environ Res Public Health, 16 (2019), pp. 1314
[10]
T. Gebru, K. Lentiro.
The impact of community-based health insurance on health-related quality of life and associated factors in Ethiopia: a comparative cross-sectional study.
Health Qual Life Outcomes, 16 (2018), pp. 110
[11]
D.M. Kazemi, B. Borsari, M.J. Levine, S. Li, K.A. Lamberson, L.A. Matta.
A systematic review of the mHealth interventions to prevent alcohol and substance abuse.
J Health Commun, 22 (2017), pp. 413-432
[12]
A. Bitton, H.L. Ratcliffe, J.H. Veillard, D.H. Kress, S. Barkley, M. Kimball, et al.
Primary health care as a foundation for strengthening health systems in low- and middle-income countries.
J Gen Intern Med, 32 (2017), pp. 566-571
[13]
Congreso de la República de Colombia.
Ley 100 de 1993 [Online].
(1993),
[14]
R. Guerrero, S.I. Prada, A.M. Pérez, J. Duarte, A.F. Aguirre.
Universal Health Coverage Assessment.
Global Network for Health Equity (GNHE), (2015),
[15]
A. Gaviria.
Logros y desafíos del sistema de salud Colombiano.
[16]
U. Giedion, M. Villar Uribe.
Colombia’s Universal Health Insurance System.
Health Aff (Millwood), 28 (2009), pp. 853-863
[17]
F. Ruiz, L. Amaya, S. Venegas.
Progressive segmented health insurance: Colombian health reform and access to health services.
Health Econ, 16 (2007), pp. 3-18
[18]
I. Garcia-Subirats, I. Vargas, A.S. Mogollón-Pérez, P. De Paepe, M. Rejane Ferreira da Silva, J.P. Unger, et al.
Inequities in access to health care in different health systems: a study in municipalities of central Colombia and north-eastern Brazil.
Int J Equity Health, 13 (2014), pp. 10
[19]
J. Acosta-Reyes, E. Navarro-Lechuga, J.C. Benitez, E. Bravo, E. Goenaga, J.I. Galindo, et al.
Health-Related Quality of Life of an adult population sample in Barranquilla, Colombia.
Revista de Salud Pública, 21 (2019), pp. 70-76
[20]
M.X. Rojas-Reyes, C. Gomez-Restrepo, V.A. Rodríguez, R. Dennis-Verano, P. Kind.
Calidad de vida relacionada con salud en la población Colombiana: ¿cómo valoran los Colombianos su estado de salud?.
Rev de Salud Pública (Bogotá), 19 (2015), pp. 340-346
[21]
C.E. Flórez, J.L. Castañeda.
Capítulo 4: Acceso y uso de serviciosde salud y estado de salud.
[22]
C.C. Gutiérrez, A.A. Rubio, M.G. Borda, R. Samper-Ternent, F.G. Laverde, D.L. Trujillo.
Perception of health-related quality of life using the EURO-QOL in older adults in Bogotá, Colombia.
Eur Geriatr Med, 7 (2016),
[23]
J.E. Sáenz-Castro, J.D. García-González.
The relationship between corruption and inequality in Colombia: Empirical evidence using panel data for the period 2008-2017.
Rev Iberoam Estud Desarro, 8 (2019), pp. 28-43
[24]
F.M. Cáceres-Manrique, L.M. Parra-Prada, O.J. Pico-Espinosa.
[Health-related quality of life in the general population of Bucaramanga, Colombia].
Rev Salud Publica (Bogota), 20 (2018), pp. 147-154
[25]
C. Wang, H. Li, L. Li, D. Xu, R.L. Kane, Q. Meng.
Health literacy and ethnic disparities in health-related quality of life among rural women: results from a Chinese poor minority area.
Health Qual Life Outcomes, 11 (2013), pp. 153
[26]
P.A. Amoah, D.R. Phillips.
Health literacy and health: rethinking the strategies for universal health coverage in Ghana.
Public Health, 159 (2018), pp. 40-49
[27]
C. Wang, R.L. Kane, D. Xu, Q. Meng.
Health literacy as a moderator of health-related quality of life responses to chronic disease among Chinese rural women.
BMC Women’s Health, 15 (2015), pp. 34
[28]
D. Nutbeam.
Health promotion glossary.
WHO/HPR/HEP, 13 (1998), pp. 349-364
[29]
N.D. Berkman, S.L. Sheridan, K.E. Donahue, D.J. Halpern, K. Crotty.
Low health literacy and health outcomes: an updated systematic review.
[30]
L. Rey-Ares, F. Augustovski, V. Irazola, O.U. Garay, O. Gianneo, G. Fernández, et al.
Health literacy and self-reported health status using the Eq-5D-5L: an exploratory analysis.
Value Health, 17 (2014), pp. A516
[31]
C. Stormacq, S. Van den Broucke, J. Wosinski.
Does health literacy mediate the relationship between socioeconomic status and health disparities? Integrative review.
Health Promot Int, 34 (2018), pp. e1-e17
[32]
P. Harris, R. Taylor, B. Minor, V. Elliot, M. Fernandez, L. O’Neal, et al.
The REDCap consortium: building an international community of software partners.
J Biomed Inform, 95 (2019),
[33]
Suárez-Obando F., Gómez-Restrepo C., Castro-Diaz S., et al. Patterns of digital information and communication technology use among patients at primary health care centers in Colombia: Phase I of the DIADA project. Manuscript in preparation.
[34]
M. Herdman, C. Gudex, A. Lloyd, M.F. Janssen, P. Kind, D. Parkin, et al.
Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L).
Qual Life Res, 20 (2011), pp. 1727-1736
[35]
EuroQol Research Foundation.
EQ-5D-3L user guide (Version 6.0).
(2018),
[36]
U. Sarkar, D. Schillinger, A. López, R. Sudore.
Validation of self-reported health literacy questions among diverse English and Spanish-speaking populations.
J Gen Int Med, 26 (2010), pp. 265-271
[37]
R.A. Hudson.
Colombia: a country study.
[38]
N.D. Berkman, S.L. Sheridan, K.E. Donahue, et al.
Health literacy interventions and outcomes: an updated systematic review.
Evid Rep Technol Assess (Full Rep), 199 (2011), pp. 1-941
[39]
D. Schillinger, M. Handley, F. Wang, H. Hammer.
Effects of self-management support on structure, process, and outcomes among vulnerable patients with diabetes: a three-arm practical clinical trial.
Diabetes care, 32 (2009), pp. 559-566
[40]
C. Finck, S. Barradas, S. Singer, M. Zenger, A. Hinz.
Health-related quality of life in Colombia: reference values of the EORTC QLQ-C30.
Eur J Cancer Care (Engl), 21 (2012), pp. 829-836

Please cite this article as: Lemley SM, Castro-Diaz S, Cubillos L, Suárez-Obando F, Torrey WC, Uribe-Restrepo JM, et al. Calidad de vida relacionada a salud y alfabetización en salud en pacientes adultos en centros de atención primaria con afiliación al régimen subsidiado o contributivo en Colombia. Rev Colomb Psiquiat. 2021;50:22–29.

Descargar PDF
Opciones de artículo