array:23 [ "pii" => "S2341192917302147" "issn" => "23411929" "doi" => "10.1016/j.redare.2017.11.015" "estado" => "S300" "fechaPublicacion" => "2018-02-01" "aid" => "877" "copyright" => "Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor" "copyrightAnyo" => "2017" "documento" => "article" "crossmark" => 1 "subdocumento" => "sco" "cita" => "Revista Española de Anestesiología y Reanimación (English Version). 2018;65:69-73" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S003493561730244X" "issn" => "00349356" "doi" => "10.1016/j.redar.2017.11.002" "estado" => "S300" "fechaPublicacion" => "2018-02-01" "aid" => "877" "copyright" => "Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor" "documento" => "article" "crossmark" => 1 "subdocumento" => "sco" "cita" => "Rev Esp Anestesiol Reanim. 2018;65:69-73" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 263 "formatos" => array:2 [ "HTML" => 220 "PDF" => 43 ] ] "es" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Editorial</span>" "titulo" => "Valoración cardiorrespiratoria no invasiva y multiparamétrica del paciente hemodinámicamente inestable" "tienePdf" => "es" "tieneTextoCompleto" => "es" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "69" "paginaFinal" => "73" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Non-invasive multi-parametric cardiorespiratory assessment of the hemodynamically unstable patient" ] ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "A. Perel" "autores" => array:1 [ 0 => array:2 [ "nombre" => "A." "apellidos" => "Perel" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2341192917302147" "doi" => "10.1016/j.redare.2017.11.015" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2341192917302147?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S003493561730244X?idApp=UINPBA00004N" "url" => "/00349356/0000006500000002/v1_201801100532/S003493561730244X/v1_201801100532/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2341192917302044" "issn" => "23411929" "doi" => "10.1016/j.redare.2017.12.004" "estado" => "S300" "fechaPublicacion" => "2018-02-01" "aid" => "862" "copyright" => "Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Revista Española de Anestesiología y Reanimación (English Version). 2018;65:74-80" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:2 [ "total" => 1 "PDF" => 1 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Haematological alterations in the cardiac patient after use of an autotransfusion system" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "74" "paginaFinal" => "80" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Alteraciones hematológicas en el paciente cardíaco tras uso de un sistema de autotransfusión" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1881 "Ancho" => 2833 "Tamanyo" => 198084 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Flowchart.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "M. Luque-Oliveros" "autores" => array:1 [ 0 => array:2 [ "nombre" => "M." "apellidos" => "Luque-Oliveros" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0034935617302116" "doi" => "10.1016/j.redar.2017.09.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0034935617302116?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2341192917302044?idApp=UINPBA00004N" "url" => "/23411929/0000006500000002/v1_201802090832/S2341192917302044/v1_201802090832/en/main.assets" ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Editorial article</span>" "titulo" => "Non-invasive multi-parametric cardiorespiratory assessment of the hemodynamically unstable patient" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "69" "paginaFinal" => "73" ] ] "autores" => array:1 [ 0 => array:3 [ "autoresLista" => "A. Perel" "autores" => array:1 [ 0 => array:3 [ "nombre" => "A." "apellidos" => "Perel" "email" => array:1 [ 0 => "perelao@shani.net" ] ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Department of Anesthesiology and Intensive Care, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel" "identificador" => "aff0005" ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Valoración cardiorrespiratoria no invasiva y multiparamétrica del paciente hemodinámicamente inestable" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">Medical decisions are often made on the basis of imperfect data and limited knowledge, which leads to diagnostic uncertainty, coupled with the uncertainty that arises from unpredictable patient responses to treatment.<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">1</span></a> In this context, we recently reported that hemodynamic monitoring can be viewed as a means of minimizing the uncertainty that often surrounds the patient's cardio-respiratory status.<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">2</span></a> Recent innovations in non-invasive monitoring technologies allow such monitoring to become an integral part of the initial patient evaluation, complementing the physical examination.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">3</span></a> Many high quality physiological parameters can be obtained non-invasively, and these offer new diagnostic and treatment options not only in the operating room and the ICU, but also on the ward, during pre-hospital care and in low-resource environments. We recently termed this non-invasive multi-parametric monitoring approach a “physiological examination”,<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">3</span></a> namely, a detailed systematic assessment of all the physiological analog and digital signals displayed on our monitors and their inter-relationships. We believe that such physiological examinations should receive the same recognition as the traditional physical examination, and should become an integral part of formal medical training.</p><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0005">New paradigm in monitoring oxygenation</span><p id="par0010" class="elsevierStylePara elsevierViewall">Pulse oximetry has evolved to the point where it is considered mandatory in clinical anesthesia and intensive care. Paradoxically, there is no “evidence” that this life-saving technology improves outcomes,<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">4</span></a> a fact that illustrates the limitations of evidence-based medicine (EBM) in assessing the impact of monitoring technologies in general. However, hypoxemia continues be a common occurrence in the operating room, and in the ICU it may be a serious safety concern. Of similar importance is the onset of hypoxemia on the ward, especially in postoperative patients. Applying a pulse oximetry-based monitoring system with nursing alarm notification via wireless pager has been shown to decrease the need for rescue events and ICU transfers in these susceptible patients.<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">5</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">Pulse oximetry, however, only shows blood oxygen status in the hypoxemic and normoxemic ranges, but is unable to reflect the degree of potentially detrimental hyperoxemia in patients receiving supplemental oxygen and in whom SpO<span class="elsevierStyleInf">2</span> is ≥97%. Oxygenation in the hyperoxemic range can be assessed by measuring partial pressure of oxygen (PaO<span class="elsevierStyleInf">2</span>), but this is invasive, costly, intermittent and often delayed. New developments in multi-wavelength pulse CO-oximetry can measure the oxygen reserve index (ORI), which is a non-dimensional measure (from 0.00 to 1.00) that provides non-invasive, continuous assessment of oxygenation status in the moderate hyperoxemic range (PaO<span class="elsevierStyleInf">2</span> of 100–200<span class="elsevierStyleHsp" style=""></span>mmHg) using a pulse oximeter.<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">6</span></a> This new parameter can be of potential value in a number of situation: (a) a significant increase in the ORI immediately following the administration of oxygen suggests the absence of intrapulmonary shunting (e.g., ARDS, pulmonary edema) as a cause for hypoxemia, since arterial hypoxemia persists despite high FiO<span class="elsevierStyleInf">2</span> in such conditions; (b) the ORI provides early warning of decreased oxygenation well before any changes in SpO<span class="elsevierStyleInf">2</span> occur<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">7</span></a>; (c) the ORI gives a better picture of the quality of pre-oxygenation before intubation and extubation. More effective means of pre-oxygenation (e.g., positive-pressure ventilation, PEEP) should therefore be used in patients in whom no substantial increase in the ORI is observed prior to endotracheal intubation; (d) the ORI may facilitate a more accurate FiO<span class="elsevierStyleInf">2</span> titration by helping prevent unintended hyperoxemia, an issue that has sparked considerable debate following the growing number of reports that even moderate hyperoxemia may be detrimental<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">8</span></a>; (e) the ORI may reflect the immediate response to PEEP, recruitment maneuvers, prone positioning, diuretics, etc. In summary, real-time changes in ORI may identify falling or rising PaO<span class="elsevierStyleInf">2</span> levels before hypoxemia or unintended hyperoxemia occur.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Information derived from the plethysmographic waveform</span><p id="par0020" class="elsevierStylePara elsevierViewall">The plethysmographic waveform (PPG) is a noninvasive circulatory signal related to the pulsatile volume of blood in tissue and is displayed by most pulse oximeters. Besides helping clinicians distinguish between reliable and unreliable SpO<span class="elsevierStyleInf">2</span> measurements, the PPG provides an often underestimated source of vital information regarding peripheral perfusion and cardiorespiratory status.<a class="elsevierStyleCrossRefs" href="#bib0120"><span class="elsevierStyleSup">9,10</span></a></p><p id="par0025" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic"><span class="elsevierStyleBold">Heart rate and rhythm:</span></span> The PPG signal is visually similar to an arterial blood pressure waveform and is a reliable independent source of heart rate monitoring. The analog waveform of the PPG may also facilitate the identification of ectopic beats, as these typically show a lower area under the PPG curve, denoting smaller stroke volumes. Additionally, due to longer diastolic filling time during the compensatory pause, a larger post-ectopic beat indicates that the patient is fluid responsive.<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">11</span></a></p><p id="par0030" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic"><span class="elsevierStyleBold">Perfusion index (PI):</span></span> The PI is the ratio of pulsatile blood flow to non-pulsatile or static blood in peripheral tissue, and is a continuous non-invasive measure of peripheral perfusion. The fidelity and reliability of PI has greatly improved in parallel with improvements in the sensitivity of certain pulse oximeters. A high PI value is indicative of peripheral vasodilatation (e.g., deep anesthesia, anaphylaxis, neural blockade, neurological injury, sepsis) while a low PI is indicative of vasoconstriction (e.g., low cardiac output (CO), hypovolemia, hypothermia, poor peripheral circulation due to old age or frailty, improper management of underlying pain, significant anxiety seen typically before induction of anesthesia). The size of the PI can be especially useful when evaluating a hypotensive patient, as a high PI may indicated vasodilation as the most likely cause, typically seen after induction of anesthesia, while a low PI may be more indicative of hypotension due to a low CO. <span class="elsevierStyleItalic"><span class="elsevierStyleBold">This is a classic example of the value of integrating parameters from various sources, as each parameter on its own very often offers limited information</span></span>.<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">12</span></a> A sudden decrease in PI following a painful stimulus may indicate an inadequate level of anesthesia or sedation. The PI value may also confirm physical signs of poor perfusion in septic shock, such as delayed capillary filing time, skin mottling and temperature gradients.<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">13</span></a> It is interesting to note that patients with septic shock and high PI values have better prognosis than those with low PI values.<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">14</span></a> This finding may be linked to the recent observation that increased body temperature in the emergency department was strongly associated with lower mortality and shorter hospital stays in patients with severe sepsis or septic shock.<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">15</span></a></p><p id="par0035" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic"><span class="elsevierStyleBold">Respiratory variations in the PPG waveform during mechanical ventilation:</span></span> The variations in the PPG signal during mechanical ventilation can be quantified as the plethysmographic variability index (PVI). The PVI is calculated as ([PImax<span class="elsevierStyleHsp" style=""></span>−<span class="elsevierStyleHsp" style=""></span>PImin]/PImax)<span class="elsevierStyleHsp" style=""></span>×<span class="elsevierStyleHsp" style=""></span>100, where PImax and PImin represent the maximal and the minimal value, respectively, of the PI over one respiratory cycle. The PVI is a dynamic parameter that reflects <span class="elsevierStyleItalic"><span class="elsevierStyleBold">fluid responsiveness</span></span> in a similar way to SPV, PPV and SVV. Unlike these other dynamic parameters, the PVI is derived continuously from the PPG signal and does not require an arterial line. The determination of fluid responsiveness is an important step in optimal fluid management, since CO does not increase in response to fluid administration (“non-responders”) in more than 50% of patients in whom fluid loading is clinically indicated, and are receiving unnecessary fluids. Dynamic parameters may therefore be especially helpful in guiding a more rational perioperative fluid management strategy. Standard perioperative goal-directed therapy (GDT) protocols have been formulated to maximize CO with fluids, with or without the addition of inotropes. As a result, patients treated with this strategy received significantly more fluids than usual-care controls. By identifying “non-responders”, PVI-directed fluid management has been repeatedly shown to lead to a significant decrease in the amount of fluids administered perioperatively. The PVI shares the same limitations as other similar dynamic parameters, insofar as it cannot be used in the presence of spontaneous breathing efforts and non-sinus rhythm, is greatly influenced by tidal volume and airway pressure, and may produce false positive results in the presence of right heart failure. Additionally, the PVI may be less accurate in critically ill patients who receive vasoconstrictors.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Respiratory variations in the PPG waveform during spontaneous ventilation</span><p id="par0040" class="elsevierStylePara elsevierViewall">Spontaneous breathing may induce significant hemodynamic changes due to repetitive negative swings in pleural pressure. By improving understanding of the physiological basis of these dynamic changes, arterial pressure measurement and PPG waveforms parameters can be used to gain unique physiological insights during spontaneous breathing. A better understanding of their physiological significance, combined with future advances in sophisticated signal processing, are expected to further increase the clinical utility of these parameters.<ul class="elsevierStyleList" id="lis0005"><li class="elsevierStyleListItem" id="lsti0005"><span class="elsevierStyleLabel">•</span><p id="par0045" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic"><span class="elsevierStyleBold">Respiratory rate (RR)</span></span>–RR is usually monitored manually, intermittently, and often inaccurately, and has therefore been described as the “neglected vital sign”. Modern digital signal processing enables commercially available pulse oximeters to monitor RR from the respiratory variations in the PPG waveform during normal spontaneous breathing. Continuous non-invasive RR monitoring may improve patient safety, especially in patients in the general ward in whom bradypnea (e.g., opioid-induced respiratory depression) or tachypnea (e.g., septic shock) may be the first signs of life-threatening disorders.</p></li><li class="elsevierStyleListItem" id="lsti0010"><span class="elsevierStyleLabel">•</span><p id="par0050" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic"><span class="elsevierStyleBold">Respiratory effort</span></span>–The hemodynamic consequences of spontaneous breathing are largely dependent on the magnitude of the inspiratory decrease in pleural pressure, and may result in significant fluctuations in the PPG waveform. An increase in this dynamic parameter should therefore alert the clinician to the possible presence of increased respiratory effort. Increased variations in the PPG waveform may appear in situations such as laryngospasm and patient–ventilator asynchrony. More importantly, they may be the only sign of the development of <span class="elsevierStyleItalic"><span class="elsevierStyleBold">upper airway obstruction</span></span>, which is common in the postoperative period, occurs frequently in patients with obstructive sleep apnea, and is one of the primary causes of morbidity and mortality during procedural sedation. Increased variations in the PPG signal may also facilitate the detection of breathlessness, which is a common stressful symptom in critically ill patients in general, and during weaning from mechanical ventilation in particular.</p></li><li class="elsevierStyleListItem" id="lsti0015"><span class="elsevierStyleLabel"><span class="elsevierStyleBold">•</span></span><p id="par0055" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic"><span class="elsevierStyleBold">Pulsus paradoxus (PP)</span></span>–A decrease in systolic blood pressure of more than 10<span class="elsevierStyleHsp" style=""></span>mmHg during the inspiratory phase is termed PP. PP can be observed in cardiac tamponade, in conditions involving exaggerated intrathoracic pressure swings, during chronic exacerbations of chronic obstructive pulmonary disease, acute asthma, or right ventricular distension. However, continuous measurement of arterial blood pressure is very rarely available outside the operating room and the ICU. Increased PPG variations provide a reliable and easily interpretable method of detecting PP associated with large pericardial effusions, asthma and a variety of other respiratory disorders in pediatric patients.</p></li><li class="elsevierStyleListItem" id="lsti0020"><span class="elsevierStyleLabel">•</span><p id="par0060" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleItalic"><span class="elsevierStyleBold">Fluid responsiveness</span></span>–Spontaneous breathing has greater tidal volume variability compared to mechanical ventilation, and has opposite cardiovascular effects. Nevertheless, many studies have attempted to examine whether dynamic parameters can reflect fluid responsiveness during spontaneous breathing. Indeed, an exaggerated inspiratory decrease in blood pressure during spontaneous inspiration may occur due to collapse or compression of the venae cavae, which are highly compliant during hypovolemia, and a corresponding reduction in venous return. However, most of these studies included a very small number of patients, and that their results were inconclusive. In addition, spontaneous breathing during these studies was often standardized or artificially induced by various respiratory maneuvers. The most plausible explanation for the failure of dynamic parameters to adequately reflect fluid responsiveness during spontaneous breathing is that they are influenced by the corresponding degree of respiratory effort. This was well demonstrated recently by the poor sensitivity of the inferior vena cava (IVC) collapsibility index to predict fluid responsiveness under conditions of normal spontaneous breathing.</p></li></ul></p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Continuous non-invasive hemoglobin monitoring</span><p id="par0065" class="elsevierStylePara elsevierViewall">Hemoglobin (Hb) concentration is a major component of oxygen delivery, and its value may indicate the presence of anemia, bleeding, and the need for blood transfusion. Pulse oximeter sensors that employ multiple wavelength pulse co-oximetry technology provide a continuous non-invasive measurement of hemoglobin (SpHb). SpHb is less accurate than lab Hb but allows real-time identification of changes in Hb concentration between invasive blood sampling. According to the recent guidelines of the European Society of Anesthesiology on severe perioperative bleeding, continuous Hb monitoring can be used to monitor trends in such circumstances. In view of the current recommendation for restrictive blood transfusion, SpHb monitoring may help prevent dangerous decline in Hb concentration in patients maintained at low Hb concentration. Another important and hitherto overlooked benefit of continuous SpHb monitoring is its ability to identify iatrogenic hemodilution. The administration of large amounts of intravenous fluids may cause hemodilution and, at times, even a paradoxical decrease in oxygen delivery. The associated decrease in Hb values to below the acceptable transfusion threshold may lead to avoidable blood transfusions. By showing the onset of acute iatrogenic hemodilution in real time, continuous SpHb monitoring help identify fluid overload and aid in the decision to transfuse blood. The simultaneous monitoring of changes in the PVI may be helpful in differentiating between decreasing SpHb values due to bleeding (increase PVI) or due to hemodilution (decrease in PVI or persistently low PVI).</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Capnography</span><p id="par0070" class="elsevierStylePara elsevierViewall">The non-invasive measurement of the exhaled partial pressure of carbon dioxide (PetCO<span class="elsevierStyleInf">2</span>) is an informative source of information regarding the actual presence of spontaneous breathing, verification of endotracheal tube placement, respiratory rate, bronchospasm, and hypo- or hyperventilation. Although PetCO<span class="elsevierStyleInf">2</span> may or may not correlate with PaCO<span class="elsevierStyleInf">2</span>, changes over time in the former may be of great value. The PetCO<span class="elsevierStyleInf">2</span> may also be affected by hemodynamic changes, as a decrease in CO increases dead space and hence is associated with a decrease in PetCO<span class="elsevierStyleInf">2</span>. A low PetCO<span class="elsevierStyleInf">2</span> value in the absence of hyperventilation or hypothermia may be an important indicator of low CO and may justify further diagnostic efforts. A significant association between PetCO<span class="elsevierStyleInf">2</span> concentration and in-hospital mortality was observed in emergency department patients with suspected sepsis across a range of disease severity. A significant increase in PetCO<span class="elsevierStyleInf">2</span> during passive leg raising represents an associated increase in CO and indicates the presence of fluid responsiveness. When hypotension develops, an associated decrease in PetCO<span class="elsevierStyleInf">2</span> suggests that a decrease in CO, while unchanged PetCO<span class="elsevierStyleInf">2</span> points more to vasodilation as the possible cause for the hypotension. This is another example of how combining and integrating physiological variables produces valuable clinical insights.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Echocardiography/cardiac output monitoring</span><p id="par0075" class="elsevierStylePara elsevierViewall">Echocardiography is an extremely valuable diagnostic tool for advanced hemodynamic assessment, but is beyond the scope of this review. Similarly, significant developments in continuous, non-invasive CO monitoring allow this important measurement to be applied in a wider range of patients, and has recently been described extensively elsewhere.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Conclusions</span><p id="par0080" class="elsevierStylePara elsevierViewall">Cardiorespiratory monitoring is an essential tool in the assessment of hemodynamically unstable patients. New technological developments allow us to record a variety of new physiological parameters that provide more detailed, continuous, and non-invasive clinical assessment in a much wider range of patients. Such “physiological examination” should be performed simultaneously to physical examination, and will complement the findings of the latter, providing real-time information about oxygenation and the response to supplemental oxygen, ventilation status including respiratory effort, fluid responsiveness, peripheral vascular tone, and decreased cardiac output. In order to maximize the potential benefits of these new technologies, clinicians must understand their physiological significance as well as their inherent limitations and confounding factors. The successful implementation of this approach to better clinical decision-making is also dependent on the combination and integration of parameters from various sources.</p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Conflict of interest</span><p id="par0085" class="elsevierStylePara elsevierViewall">The author is an independent adviser to Masimo Inc. (Irvine, CA, USA) and Pulsion/Getinge (Munich, Germany).</p><p id="par0090" class="elsevierStylePara elsevierViewall">The author confirms that he has met all the requirements of the authority.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:9 [ 0 => array:2 [ "identificador" => "sec0005" "titulo" => "New paradigm in monitoring oxygenation" ] 1 => array:2 [ "identificador" => "sec0010" "titulo" => "Information derived from the plethysmographic waveform" ] 2 => array:2 [ "identificador" => "sec0015" "titulo" => "Respiratory variations in the PPG waveform during spontaneous ventilation" ] 3 => array:2 [ "identificador" => "sec0020" "titulo" => "Continuous non-invasive hemoglobin monitoring" ] 4 => array:2 [ "identificador" => "sec0025" "titulo" => "Capnography" ] 5 => array:2 [ "identificador" => "sec0030" "titulo" => "Echocardiography/cardiac output monitoring" ] 6 => array:2 [ "identificador" => "sec0035" "titulo" => "Conclusions" ] 7 => array:2 [ "identificador" => "sec0040" "titulo" => "Conflict of interest" ] 8 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Perel A. Valoración cardiorrespiratoria no invasiva y multiparamétrica del paciente hemodinámicamente inestable. Rev Esp Anestesiol Reanim. 2018;65:69–73.</p>" ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:15 [ 0 => array:3 [ "identificador" => "bib0080" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tolerating uncertainty: the next medical revolution?" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.L. Simpkin" 1 => "R.M. Schwartzstein" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1056/NEJMp1606402" "Revista" => array:6 [ "tituloSerie" => "N Engl J Med" "fecha" => "2016" "volumen" => "375" "paginaInicial" => "1713" "paginaFinal" => "1715" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27806221" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0085" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hemodynamic monitoring in the era of evidence-based medicine" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "B. Saugel" 1 => "M.L. Malbrain" 2 => "A. Perel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s13054-016-1534-8" "Revista" => array:5 [ "tituloSerie" => "Crit Care" "fecha" => "2016" "volumen" => "20" "paginaInicial" => "401" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27993153" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0090" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Getting the full diagnostic picture in intensive care medicine: a plea for «physiological examination»" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "B. Saugel" 1 => "J.Y. Wagner" 2 => "J. Wendon" 3 => "A. Perel" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1513/AnnalsATS.201509-571LE" "Revista" => array:6 [ "tituloSerie" => "Ann Am Thorac Soc" "fecha" => "2015" "volumen" => "12" "paginaInicial" => "1738" "paginaFinal" => "1739" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26540432" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0095" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pulse oximetry for perioperative monitoring" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "T. Pedersen" 1 => "A. Nicholson" 2 => "K. Hovhannisyan" 3 => "A.M. Moller" 4 => "A.F. Smith" 5 => "S.R. Lewis" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:3 [ "tituloSerie" => "Cochrane Database Syst Rev" "fecha" => "2014" "paginaInicial" => "CD002013" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0100" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A.H. Taenzer" 1 => "J.B. Pyke" 2 => "S.P. McGrath" 3 => "G.T. Blike" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/ALN.0b013e3181ca7a9b" "Revista" => array:6 [ "tituloSerie" => "Anesthesiology" "fecha" => "2010" "volumen" => "112" "paginaInicial" => "282" "paginaFinal" => "287" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20098128" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0105" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:3 [ "comentario" => "[Epub ahead of print]" "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The oxygen reserve index (ORI): a new tool to monitor oxygen therapy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "T.W.L. Scheeren" 1 => "F.J. Belda" 2 => "A. Perel" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "J Clin Monit Comput" "fecha" => "2017" ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0110" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Oxygen reserve index: a novel noninvasive measure of oxygen reserve: a pilot study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "P. Szmuk" 1 => "J.W. Steiner" 2 => "P.N. Olomu" 3 => "R.P. Ploski" 4 => "D.I. Sessler" 5 => "T. Ezri" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/ALN.0000000000001009" "Revista" => array:6 [ "tituloSerie" => "Anesthesiology" "fecha" => "2016" "volumen" => "124" "paginaInicial" => "779" "paginaFinal" => "784" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26978143" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0115" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Effect of conservative vs. conventional oxygen therapy on mortality among patients in an intensive care unit: the oxygen-ICU randomized clinical trial" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Girardis" 1 => "S. Busani" 2 => "E. Damiani" 3 => "A. Donati" 4 => "L. Rinaldi" 5 => "A. Marudi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1001/jama.2016.11993" "Revista" => array:6 [ "tituloSerie" => "JAMA" "fecha" => "2016" "volumen" => "316" "paginaInicial" => "1583" "paginaFinal" => "1589" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27706466" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0120" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The peripheral pulse wave: information overlooked" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "W.B. Murray" 1 => "P.A. Foster" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "J Clin Monit" "fecha" => "1996" "volumen" => "12" "paginaInicial" => "365" "paginaFinal" => "377" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/8934343" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0125" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Utility of the photoplethysmogram in circulatory monitoring" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A. Reisner" 1 => "P.A. Shaltis" 2 => "D. McCombie" 3 => "H.H. Asada" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/ALN.0b013e31816c89e1" "Revista" => array:6 [ "tituloSerie" => "Anesthesiology" "fecha" => "2008" "volumen" => "108" "paginaInicial" => "950" "paginaFinal" => "958" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18431132" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0130" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Using extra systoles to predict fluid responsiveness in cardiothoracic critical care patients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "S.T. Vistisen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10877-016-9907-8" "Revista" => array:6 [ "tituloSerie" => "J Clin Monit Comput" "fecha" => "2017" "volumen" => "31" "paginaInicial" => "693" "paginaFinal" => "699" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27460129" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0135" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Perioperative cardiovascular monitoring of high-risk patients: a consensus of 12" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.L. Vincent" 1 => "P. Pelosi" 2 => "R. Pearse" 3 => "D. Payen" 4 => "A. Perel" 5 => "A. Hoeft" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s13054-015-0932-7" "Revista" => array:5 [ "tituloSerie" => "Crit Care" "fecha" => "2015" "volumen" => "19" "paginaInicial" => "224" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25953531" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0140" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Perfusion indices revisited" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "A. Hasanin" 1 => "A. Mukhtar" 2 => "H. Nassar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s40560-017-0220-5" "Revista" => array:5 [ "tituloSerie" => "J Intensive Care" "fecha" => "2017" "volumen" => "5" "paginaInicial" => "24" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28331621" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0145" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "H.W. He" 1 => "D.W. Liu" 2 => "Y. Long" 3 => "X.T. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/cc12788" "Revista" => array:5 [ "tituloSerie" => "Crit Care" "fecha" => "2013" "volumen" => "17" "paginaInicial" => "R116" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23787173" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0150" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Fever in the emergency department predicts survival of patients with severe sepsis and septic shock admitted to the ICU" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "J. Sunden-Cullberg" 1 => "R. Rylance" 2 => "J. Svefors" 3 => "A. Norrby-Teglund" 4 => "J. Bjork" 5 => "M. Inghammar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/CCM.0000000000002249" "Revista" => array:6 [ "tituloSerie" => "Crit Care Med" "fecha" => "2017" "volumen" => "45" "paginaInicial" => "591" "paginaFinal" => "599" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28141683" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/23411929/0000006500000002/v1_201802090832/S2341192917302147/v1_201802090832/en/main.assets" "Apartado" => null "PDF" => "https://static.elsevier.es/multimedia/23411929/0000006500000002/v1_201802090832/S2341192917302147/v1_201802090832/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2341192917302147?idApp=UINPBA00004N" ]
Journal Information
Vol. 65. Issue 2.
Pages 69-73 (February 2018)
Share
Download PDF
More article options
Vol. 65. Issue 2.
Pages 69-73 (February 2018)
Editorial article
Non-invasive multi-parametric cardiorespiratory assessment of the hemodynamically unstable patient
Valoración cardiorrespiratoria no invasiva y multiparamétrica del paciente hemodinámicamente inestable
A. Perel
Department of Anesthesiology and Intensive Care, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
Article information
These are the options to access the full texts of the publication Revista Española de Anestesiología y Reanimación (English Edition)
Subscriber
Subscribe
Purchase
Contact
Phone for subscriptions and reporting of errors
From Monday to Friday from 9 a.m. to 6 p.m. (GMT + 1) except for the months of July and August which will be from 9 a.m. to 3 p.m.
Calls from Spain
932 415 960
Calls from outside Spain
+34 932 415 960
E-mail